Non-linear diffusion in fractured porous media and application to dual-medium inter-porosity flux - Thèses de Sorbonne Université Accéder directement au contenu
Thèse Année : 2022

Non-linear diffusion in fractured porous media and application to dual-medium inter-porosity flux

Diffusion non-linéaire en milieu poreux fracturé : application à la détermination du flux matrice-fracture

Sina Momeni

Résumé

Transfers in fractured porous media are involved in many industrial applications such as oil production, geothermal exploitation, soil remediation, or geological storage. Dimensional analysis of matrix-fracture transfers must consider all physical mechanisms driving transfers, pressure diffusivity, gravity/segregation, capillary force, viscous flow, molecular diffusion for compositional transfers, and chemical alteration of fluid/rock. Modeling and up-scaling these transfers in linear and non-linear forms remain a major challenge in many applications. The “dual-medium” model is a powerful tool for up-scaling transfers in the matrix block scale of Naturally Fractured Reservoirs but, unfortunately, most of their formulations rely on the asymptotic value (at large/late times) of a so-called “shape factor” in a single-phase flow context. This research increases the reliability of up-scaling of matrix-fracture dual-medium models that are adopted to simulate fluid or heat transport at the scale of geological reservoirs. Analytical solutions for single-phase diffusion are well-known in Darcy-scale. These Darcy-scale models provided reference solutions whose physical analysis helps in setting up the upscaling methods for parameterizing the macro-scale models based on the dual-medium concept. This study derived an analytical shape factor for linear diffusion in the dual-medium model with specific fracture boundary conditions and suggested a correction function to modify the dual-medium numerical simulator. The matrix-fracture transfer time is characterized by early- and late-time behaviors that turned to our methodology to solve the non-linear two-phase transfer. In many situations of practical interest, capillarity is the dominant driving force and the saturation-dependent diffusion coefficient vanishes at the saturation end points, which renders the driving equation highly singular. We revisit this non-linear problem with Dirichlet boundary condition by presenting two exact asymptotic solutions valid for early- and late-times, under the assumption that the diffusivity vanishes as a power-law of both phase saturations at the extreme values of the fluid saturation. In the early-time an exact self-similar solution is adopted. Focusing on the late-time domain, the asymptotic solution is derived using an Ansatz that is written under the form of a power-law time decay of the NAPL saturation. The spatial variations of the solution are given analytically for a one-dimensional porous medium corresponding to parallel fracture planes. The analytical solution is in very good agreement with the results of numerical simulations involving various realistic sets of input transport parameters. Generalization to the case of two- or three-dimensional matrix blocks of arbitrary shape is proposed using a similar Ansatz. A fast converging algorithm based on a fixed-point sequence starting from a suitable first guess was developed. Comparisons with full-time simulations for several typical block geometries show an excellent agreement. These analytical results generalize linear single-phase representation of matrix-to-fracture exchange term to two-phase capillary imbibition transfer. This formulation accounts for the non-linearity of the local flow equations using the power-law dependence of the conductivity for low NAPL saturation. The corresponding exponent can be predicted from the input conductivity parameters. Similar findings are also presented and validated numerically for two- or three-dimensional matrix blocks. Finally, we present a matrix-fracture transfer model with a characteristic time that scales the full range of a counter-current capillary imbibition in a multi-dimensional system.That original approach paves the way to research leading to a more faithful description of matrix-to-fracture exchanges when considering a realistic fractured medium composed of a population of matrix blocks of various size and shapes.
Les transferts en milieu poreux fracturés sont importants dans de nombreuses applications industrielles telles que la production pétrolière, l'exploitation géothermique, la dépollution des sols ou le stockage géologique. L'analyse dimensionnelle des transferts matrice-fracture doit prendre en compte tous les mécanismes physiques entraînant les transferts, la diffusivité de la pression, la gravité/ségrégation, la force capillaire, l'écoulement visqueux, la diffusion moléculaire pour les transferts de composition et l'altération chimique du fluide/de la roche. La modélisation et la mise à l'échelle de ces transferts décrits par des équations de transport linéaires et non linéaires font l'objet de recherches actives. Le modèle double milieu est un outil puissant pour la mise à l'échelle des transferts à l'échelle des blocs matriciels des réservoirs naturellement fracturés, mais, malheureusement, la plupart de leurs formulations reposent sur la valeur asymptotique (aux temps longs) impliquant un « facteur de forme » déterminé dans un contexte d'écoulement monophasique. Nos travaux visent à améliorer la fiabilité de la mise à l'échelle des modèles matrice-fracture bi-milieu qui sont adoptés pour simuler le transport et les échanges de fluides à l'échelle des réservoirs géologiques. Les solutions analytiques pour la pression monophasique ou la diffusion moléculaire sont bien connues à l'échelle de Darcy. Ces modèles à l'échelle de Darcy ont fourni des solutions de référence dont l'analyse physique aide à mettre en place les méthodes de mise à l'échelle pour paramétrer les modèles à macro-échelle basés sur le concept de double milieu. Cette étude fournit un facteur de forme analytique pour la diffusion linéaire dans le modèle à double milieu avec des conditions aux limites de fracture spécifiques et suggère une correction pour améliorer le simulateur numérique à double milieu. Le transfert matrice-fracture est caractérisé par des comportements précoces et tardifs qui ont orienté notre méthodologie pour résoudre le transfert non linéaire en deux phases. Nous revisitons le problème non linéaire avec condition aux limites de Dirichlet en présentant deux solutions asymptotiques exactes valables pour les temps courts et longs, sous l'hypothèse que la diffusivité s'annule comme une loi de puissance des deux saturations de phase aux valeurs extrêmes de la saturation du fluide. Aux temps, courts une solution auto-similaire exacte déjà connue par ailleurs est adaptée. Dans le domaine des temps longs, un Ansatz s’écrivant sous la forme d'une décroissance temporelle en loi de puissance de la saturation Liquide en Phase Non Aqueuse. Les variations spatiales de la solution sont données analytiquement pour un milieu poreux unidimensionnel. La solution analytique est en très bon accord avec les résultats de simulations numériques impliquant divers ensembles réalistes de paramètres de transport d'entrée. Dans le cas multidimensionnel de forme arbitraire, un algorithme à convergence rapide basé sur une séquence en virgule fixe a été développé. Les comparaisons avec des simulations complètes pour plusieurs géométries de blocs typiques montrent un excellent accord. Ces solutions analytiques généralisent la représentation linéaire monophasique du terme d'échange matrice-fracture au transfert d'imbibition capillaire biphasique. Cette formulation tient compte de la non-linéarité des équations d'écoulement locales en utilisant la dépendance en loi de puissance de la conductivité pour une faible saturation en NAPL. L'exposant correspondant peut être prédit à partir des paramètres de conductivité d'entrée. La généralisation des résultats à des blocs matriciels représentatifs à deux ou trois dimensions est également présentée, et les résultats sont confirmés. Enfin, nous présentons un modèle de transfert matrice-fracture avec un temps caractéristique portant sur toute la gamme d'une imbibition capillaire à contre-courant dans un système de blocs 2D ou 3D.
Fichier principal
Vignette du fichier
MOMENI_Sina_these_2022.pdf (5.31 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04043143 , version 1 (23-03-2023)

Identifiants

  • HAL Id : tel-04043143 , version 1

Citer

Sina Momeni. Non-linear diffusion in fractured porous media and application to dual-medium inter-porosity flux. Earth Sciences. Sorbonne Université, 2022. English. ⟨NNT : 2022SORUS496⟩. ⟨tel-04043143⟩
73 Consultations
19 Téléchargements

Partager

Gmail Facebook X LinkedIn More