S. Anders, P. T. Pyl, and W. Huber, HTSeq-A python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

S. Andrews, FastQC: A quality control tool for high throughput sequence data, Babraham Bioinformatics, 2010.

K. R. Astell and D. Sieger, Investigating microglia-brain tumor cell interactions in vivo in the larval zebrafish brain, Methods in Cell Biology, vol.138, pp.593-626, 2017.

Y. Bedoui, J. W. Neal, and P. Gasque, The neuro-immune-regulators (NIREGs) promote tissue resilience: A vital component of the host's defense strategy against neuroinflammation, Journal of Neuroimmune Pharmacology, vol.13, issue.3, pp.309-329, 2018.

C. Beutner, B. Linnartz-gerlach, S. V. Schmidt, M. Beyer, M. R. Mallmann et al., Unique transcriptome signature of mouse microglia, Glia, vol.61, pp.1429-1442, 2013.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, pp.2114-2120, 2014.

G. C. Brown and J. J. Neher, Eaten alive! Cell death by primary phagocytosis: "Phagoptosis", Trends in Biochemical Sciences, vol.37, issue.8, pp.325-332, 2012.

O. Butovsky, M. P. Jedrychowski, C. S. Moore, R. Cialic, A. J. Lanser et al., Identification of a unique TGF-?-dependent molecular and functional signature in microglia, Nature Neuroscience, vol.17, pp.131-143, 2013.

A. M. Casano, M. Albert, and F. Peri, Developmental apoptosis mediates entry and positioning of microglia in the Zebrafish brain, Cell Reports, vol.16, issue.4, pp.897-906, 2016.

K. Chia, J. Mazzolini, M. Mione, and D. Sieger, Tumor initiating cells induce Cxcr4-mediated infiltration of pro-tumoral macrophages into the brain, 2018.

I. M. Chiu, E. T. Morimoto, H. Goodarzi, J. T. Liao, S. O'keeffe et al., A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model, Cell Reports, vol.4, pp.385-401, 2013.

M. Distel, M. F. Wullimann, and R. W. Köster, Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proceedings of the, vol.106, pp.13365-13370, 2009.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: Ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2012.

E. Eden, R. Navon, I. Steinfeld, D. Lipson, and Z. Yakhini, GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinformatics, vol.10, p.48, 2009.

F. Ellett, L. Pase, J. W. Hayman, A. Andrianopoulos, and G. J. Lieschke, mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish, Blood, vol.117, pp.49-56, 2011.

G. Ferrero, C. B. Mahony, E. Dupuis, L. Yvernogeau, E. Di-ruggiero et al., Embryonic microglia derive from primitive macrophages and are replaced by cmyb-dependent definitive microglia in Zebrafish, Cell Reports, vol.24, pp.130-141, 2018.

T. F. Galatro, I. R. Holtman, A. M. Lerario, I. D. Vainchtein, N. Brouwer et al., Transcriptomic analysis of purified human cortical microglia reveals age-associated changes, Nature Neuroscience, vol.20, pp.1162-1171, 2017.

E. L. Gautier, T. Shay, J. Miller, M. Greter, C. Jakubzick et al., Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nature Immunology, vol.13, pp.1118-1128, 2012.

T. R. Hammond, C. Dufort, L. Dissing-olesen, S. Giera, A. Young et al., Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes, Immunity, vol.50, pp.253-271, 2019.

P. Herbomel, B. Thisse, and C. Thisse, Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process, Developmental Biology, vol.238, pp.274-288, 2001.

S. E. Hickman, N. D. Kingery, T. K. Ohsumi, M. L. Borowsky, L. Wang et al., The microglial sensome revealed by direct RNA sequencing, Nature Neuroscience, vol.16, pp.1896-1905, 2013.

H. Huang, H. Li, X. Chen, Y. Yang, X. Li et al., HMGA2, a driver of inflammation, is associated with hypermethylation in acute liver injury, Toxicology and Applied Pharmacology, vol.328, pp.34-45, 2017.

A. Ives, J. Nomura, F. Martinon, T. Roger, D. Leroy et al., Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation, Nature Communications, vol.6, pp.1-11, 2015.

J. Jeong, H. Kwon, J. Ahn, D. Kang, S. Kwon et al., Functional and developmental analysis of the blood-brain barrier in zebrafish, Brain Research Bulletin, vol.75, pp.619-628, 2008.

M. J. Jordão, R. Sankowski, S. M. Brendecke, S. V. Sagar, G. Locatelli et al., Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation, Science, p.7554, 2019.

K. Kierdorf, D. Erny, T. Goldmann, V. Sander, C. Schulz et al., Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways, vol.16, pp.273-280, 2013.

G. Lemke, How macrophages deal with death, Nature Reviews Immunology, vol.19, issue.9, pp.539-549, 2019.

Q. Li, Z. Cheng, L. Zhou, S. Darmanis, N. F. Neff et al., Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing, Neuron, vol.101, pp.207-223, 2019.

Y. Li, X. Du, C. Liu, Z. Wen, and J. Du, Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo, Developmental Cell, vol.23, issue.6, pp.1189-1202, 2012.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, vol.15, p.31, 2014.

T. Masuda, R. Sankowski, O. Staszewski, C. B. Böttcher, L. Amann et al., Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution, Nature, vol.566, issue.7744, pp.388-392, 2019.

O. Matcovitch-natan, D. R. Winter, A. Giladi, S. Vargas-aguilar, A. Spinrad et al., Microglia development follows a stepwise program to regulate brain homeostasis, Science, p.8670, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438174

T. Matsuda, N. Murao, Y. Katano, B. Juliandi, J. Kohyama et al., TLR9 signalling in microglia attenuatesseizureinduced aberrant neurogenesis inthe adult hippocampus, Nature Communications, vol.6, p.6514, 2015.

F. Mazaheri, O. Breus, S. Durdu, P. Haas, J. Wittbrodt et al., Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia, Nature Communications, vol.5, p.4046, 2014.

J. Mazzolini, K. Chia, and D. Sieger, Isolation and RNA extraction of neurons, macrophages and microglia from larval zebrafish brains, Journal of Visualized Experiments, vol.134, p.57431, 2018.

S. Nam and J. Lim, Essential role of interferon regulatory factor 4 (IRF4) in immune cell development, Archives of Pharmacal Research, vol.39, pp.1548-1555, 2016.

J. Ohnmacht, Y. Yang, G. W. Maurer, A. Barreiro-iglesias, T. M. Tsarouchas et al., Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish, Development, vol.143, pp.1464-1474, 2016.

N. Oosterhof, I. R. Holtman, L. E. Kuil, H. C. Van-der-linde, E. W. Boddeke et al., Identification of a conserved and acute neurodegeneration-specific microglial transcriptome in the zebrafish, Glia, vol.65, pp.138-149, 2016.

F. Peri and C. Nüsslein-volhard, Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in Phagosomal fusion in vivo, Cell, vol.133, pp.916-927, 2008.

M. Prinz, D. Erny, and N. Hagemeyer, Ontogeny and homeostasis of CNS myeloid cells, Nature Immunology, vol.18, pp.385-392, 2017.

S. M. Reinhard, K. Razak, and I. M. Ethell, A delicate balance: Role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders, Frontiers in Cellular Neuroscience, vol.9, p.428, 2015.

K. E. Roney, B. P. O'connor, H. Wen, E. K. Holl, E. H. Guthrie et al., Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation, PLoS One, vol.6, pp.24795-24809, 2011.

F. Rossi, A. M. Casano, K. Henke, K. Richter, and F. Peri, The SLC7A7 transporter identifies microglial precursors prior to entry into the brain, Cell Reports, vol.11, issue.7, pp.1008-1017, 2015.

M. W. Salter and B. Stevens, Microglia emerge as central players in brain disease, vol.23, pp.1018-1027, 2017.

K. Shen, H. Sidik, and W. S. Talbot, The rag-Ragulator complex regulates lysosome function and phagocytic flux in microglia, Cell Reports, vol.14, pp.547-559, 2016.

C. E. Shiau, K. R. Monk, W. Joo, and W. S. Talbot, An antiinflammatory NOD-like receptor is required for microglia development, Cell Reports, vol.5, pp.1342-1352, 2013.

D. Sieger, C. Moritz, T. Ziegenhals, S. Prykhozhij, and F. Peri, Longrange Ca 2+ waves transmit brain-damage signals to microglia, Developmental Cell, vol.22, pp.1138-1148, 2012.

D. Sieger and F. Peri, Animal models for studying microglia: The first, the popular, and the new, Glia, vol.61, pp.3-9, 2013.

W. M. Song and M. Colonna, The identity and function of microglia in neurodegeneration, Nature Immunology, vol.19, issue.10, pp.1048-1058, 2018.

A. J. Svahn, M. B. Graeber, F. Ellett, G. J. Lieschke, S. Rinkwitz et al., Development of ramified microglia from early macrophages in the zebrafish optic tectum. Developmental Neurobiology, vol.73, pp.60-71, 2013.

T. M. Tsarouchas, D. Wehner, L. Cavone, T. Munir, M. Keatinge et al., Dynamic control of proinflammatory cytokines Il-1? and Tnf-? by macrophages in zebrafish spinal cord regeneration, Nature Communications, vol.9, p.4670, 2018.

J. V. Welser-alves and R. Milner, Microglia are the major source of TNF-? and TGF-?1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin, Neurochemistry International, vol.63, pp.47-53, 2013.

J. Xu, T. Wang, Y. Wu, W. Jin, and Z. Wen, Microglia colonization of developing Zebrafish midbrain is promoted by apoptotic neuron and Lysophosphatidylcholine, Developmental Cell, vol.38, issue.2, pp.214-222, 2016.

J. Xu, L. Zhu, S. He, Y. Wu, W. Jin et al., Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in Zebrafish, Developmental Cell, vol.34, pp.632-641, 2015.

J. Yang, J. Chen, V. M. Del-carmen, J. Osei-owusu, J. Chu et al., PAC, an evolutionarily conserved membrane protein, is a proton-activated chloride channel, Science, vol.364, pp.395-399, 2019.

Y. Zhang, K. Chen, S. A. Sloan, M. L. Bennett, A. R. Scholze et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex, Journal of Neuroscience, vol.34, pp.11929-11947, 2014.