A. J. Van-der-molen, Diagnostic efficacy of gadolinium-based contrast media, Contrast Media, Medical Radiology. Diagnostic Imaging, vol.2014, pp.181-191

K. R. Fink and J. R. Fink, Imaging of brain metastases, Surg Neurol Int, vol.4, pp.209-219, 2013.

L. Nayak, E. Q. Lee, and P. Y. Wen, Epidemiology of brain metastases, Curr Oncol Rep, vol.14, pp.48-54, 2012.

V. M. Runge and J. T. Heverhagen, Advocating the development of next-generation high-relaxivity gadolinium chelates for clinical magnetic resonance, Invest Radiol, vol.53, pp.381-389, 2018.

A. Ba-ssalamah, I. M. Nöbauer-huhmann, and K. Pinker, Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases, Invest Radiol, vol.38, pp.415-422, 2003.

P. Caravan, J. J. Ellison, and T. J. Mcmurry, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications, Chem Rev, vol.99, pp.2293-2352, 1999.

A. K. Abu-alfa, Nephrogenic systemic fibrosis and gadolinium-based contrast agents, Adv Chronic Kidney Dis, vol.18, pp.188-198, 2011.

T. Grobner, Gadolinium-a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?, Nephrol Dial Transplant, vol.21, pp.1104-1108, 2006.

P. Marckmann, L. Skov, and K. Rossen, Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging, J Am Soc Nephrol, vol.17, pp.2359-2362, 2006.

D. R. Broome, Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting, Eur J Radiol, vol.66, pp.230-234, 2008.

B. J. Edwards, A. E. Laumann, and B. Nardone, Advancing pharmacovigilance through academic-legal collaboration: the case of gadolinium-based contrast agents and nephrogenic systemic fibrosis-a Research on Adverse Drug Events and Reports (RADAR) report, Br J Radiol, vol.87, 2014.

M. Port, J. M. Idée, and C. Medina, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review, Biometals, vol.21, pp.469-490, 2008.

M. A. Sieber, P. Lengsfeld, and T. Frenzel, Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions, Eur Radiol, vol.18, pp.2164-2173, 2008.

H. Pietsch, P. Lengsfeld, and T. Steger-hartmann, Impact of renal impairment on long-term retention of gadolinium in the rodent skin following the administration of gadolinium-based contrast agents, Invest Radiol, vol.44, pp.226-233, 2009.

N. Fretellier, N. Bouzian, and N. Parmentier, Nephrogenic systemic fibrosis-like effects of magnetic resonance imaging contrast agents in rats with adenineinduced renal failure, Toxicol Sci, vol.131, pp.259-270, 2013.

N. Fretellier, J. M. Idée, and A. Dencausse, Comparative in vivo dissociation of gadolinium chelates in renally impaired rats: a relaxometry study, Invest Radiol, vol.46, pp.292-300, 2011.

, Gadopiclenol Physicochemical Profile, vol.54, issue.8, 2019.

J. M. Idée, N. Fretellier, and C. Robic, The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: a critical update, Crit Rev Toxicol, vol.44, pp.895-913, 2014.

T. Kanda, K. Ishii, and H. Kawaguchi, High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material, Radiology, vol.270, pp.834-841, 2014.

Y. Zhang, Y. Cao, and G. L. Shih, Extent of signal hyperintensity on unenhanced T1-weighted brain MR images after more than 35 administrations of linear gadolinium-based contrast agents, Radiology, vol.282, pp.516-525, 2017.

T. Frenzel, C. Apte, and G. Jost, Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats, Invest Radiol, vol.52, pp.396-404, 2017.

E. Gianolio, P. Bardini, and F. Arena, Gadolinium retention in the rat brain: assessment of the amounts of insoluble gadolinium-containing species and intact gadolinium complexes after repeated administration of gadolinium-based contrast agents, Radiology, vol.285, pp.839-849, 2017.

P. Robert, S. Fingerhut, and C. Factor, One-year retention of gadolinium in the brain: comparison of gadodiamide and gadoterate meglumine in a rodent model, Radiology, vol.288, pp.424-433, 2018.

, EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans, 2017.

, Gadolinium-based Contrast Agents (GBCAs): Drug Safety Communication -Retained in Body; New Class Warnings, US Food and Drugs Agency (FDA), 2019.

E. Kanal, K. Maravilla, and H. A. Rowley, Gadolinium contrast agents for CNS imaging: current concepts and clinical evidence, AJNR Am J Neuroradiol, vol.35, pp.2215-2226, 2014.

K. S. Subedi, T. Takahashi, and T. Yamano, Usefulness of double dose contrastenhanced magnetic resonance imaging for clear delineation of gross tumor volume in stereotactic radiotherapy treatment planning of metastatic brain tumors: a dose comparison study, J Radiat Res, vol.54, pp.135-139, 2013.

M. Rohrer, H. Bauer, and J. Mintorovitch, Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths, Invest Radiol, vol.40, pp.715-724, 2005.

H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys Rev, vol.94, pp.630-638, 1954.

S. Meiboom and D. Gill, Modified spin-echo method for measuring nuclear relaxation times, Rev Sci Instrum, vol.29, pp.688-691, 1958.

J. Moreau, E. Guillon, and J. C. Pierrard, Complexing mechanism of the lanthanide cations Eu 3+ , Gd 3+ , and Tb 3+ with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DOTA)-characterization of three successive complexing phases: study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS, Chemistry, vol.10, pp.5218-5232, 2004.

R. Fournaise and C. Petitfaux, Study of formation of complexes in aqueous solutions. III. A new method for refinement of stability constants of complexes and other parameters of protometric titrations, Talanta, vol.34, pp.385-395, 1987.

J. R. Wesolowski and A. Kaiser, Alternatives to GBCA: are we there yet?, Top Magn Reson Imaging, vol.25, pp.171-175, 2016.

M. F. Tweedle, Science to practice: will gadolinium chelates be replaced by iron chelates in MR imaging?, Radiology, vol.286, pp.409-411, 2018.

P. Boehm-sturm, A. Haeckel, and R. Hauptmann, Low-molecular-weight iron chelates may be an alternative to gadolinium-based contrast agents for T1-weighted contrast-enhanced MR imaging, Radiology, vol.286, pp.537-546, 2018.

Y. X. Wáng, J. M. Idée, and C. Corot, Scientific and industrial challenges of developing nanoparticle-based theranostics and multiple-modality contrast agents for clinical application, Nanoscale, vol.7, pp.16146-16150, 2015.

S. Aime, M. Botta, G. Crich, and S. , NMR relaxometric studies of Gd(III) complexes with heptadentate macrocyclic ligands, Magn Reson Chem, vol.36, pp.200-208, 1998.

J. H. Freed, Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes, J Chem Phys, vol.68, pp.4034-4037, 1978.

M. Botta, Second coordination sphere water molecules and relaxivity of gadolinium (III) complexes: implication for MRI contrast agents, Eur J Inorg Chem, pp.399-407, 2000.

G. Tircsó, Z. Kovacs, and A. D. Sherry, Equilibrium and formation/dissociation kinetics of some Ln(III)PCTA complexes, Inorg Chem, vol.45, pp.9269-9280, 2006.

D. Meyer, M. Schaefer, and B. Bonnemain, Gd-DOTA, a potential MRI contrast agent. Current status of physicochemical knowledge, Invest Radiol, vol.23, pp.232-235, 1988.

X. Wang, J. T. Comblin, and V. , A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium (III) polyazapolycarboxylic MRI contrast agent, Inorg Chem, vol.31, pp.1095-1099, 1992.

M. Rasschaert, A. Emerit, and N. Fretellier, Gadolinium retention, brain T1 hyperintensity, and endogenous metals: a comparative study of macrocyclic versus linear gadolinium chelates in renally sensitized rats, Invest Radiol, vol.53, pp.518-528, 2018.

N. Fretellier, J. Idée, and P. Bruneval, Hyperphosphataemia sensitizes renally impaired rats to the profibrotic effects of gadodiamide, Br J Pharmacol, vol.165, pp.1151-1162, 2012.

L. Telgmann, C. A. Wehe, and J. Künnemeyer, Speciation of Gd-based MRI contrast agents and potential products of transmetalation with iron ions or parenteral iron supplements, Anal Bioanal Chem, vol.404, pp.2133-2141, 2012.

C. Robic, S. Catoen, and M. C. De-goltstein, The role of phosphate on Omniscan® dechelation: an in vitro relaxivity study at pH 7, Biometals, vol.24, pp.759-768, 2011.

M. Taupitz, N. Stolzenburg, and M. Ebert, Gadolinium-containing magnetic resonance contrast media: investigation on the possible transchelation of Gd 3+ to the glycosaminoglycan heparin, Contrast Media Mol Imaging, vol.8, pp.108-116, 2013.

J. M. Idée, C. Berthommier, and V. Goulas, Haemodynamic effects of macrocyclic and linear gadolinium chelates in rats: role of calcium and transmetallation, Biometals, vol.11, pp.113-123, 1998.

C. Cabella, S. G. Crich, and D. Corpillo, Cellular labeling with Gd(III) chelates: only high thermodynamic stabilities prevent the cells acting as 'sponges' of Gd 3+ ions, Contrast Media Mol Imaging, vol.1, pp.23-29, 2006.

S. Laurent, L. V. Elst, and F. Copoix, Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment, Invest Radiol, vol.36, pp.115-122, 2001.

S. Swaminathan, Gadolinium toxicity: iron and ferroportin as central targets, Magn Reson Imaging, vol.34, pp.1373-1376, 2016.

M. A. Sieber, T. Steger-hartmann, and P. Lengsfeld, Gadolinium-based contrast agents and NSF: evidence from animal experience, J Magn Reson Imaging, vol.30, pp.1268-1276, 2009.

S. Aime and P. Caravan, Biodistribution of gadolinium-based contrast agents, including gadolinium deposition, J Magn Reson Imaging, vol.30, pp.1259-1267, 2009.

A. Leo, C. Hansch, and D. Elkins, Partition coefficients and their uses, Chem Rev, vol.71, pp.525-616, 1971.

M. F. Tweedle, Using radiotracers to characterize magnetic resonance imaging contrast agents, Invest Radiol, vol.37, pp.107-113, 2002.

J. Zweens, H. Frankena, and P. Rispens, Determination of extracellular fluid volume in the dog with ferrocyanide, Pflugers Arch, vol.357, pp.275-290, 1975.

H. Vogler, J. Platzek, and G. Schuhmann-giampieri, Pre-clinical evaluation of gadobutrol: a new, neutral, extracellular contrast agent for magnetic resonance imaging, Eur J Radiol, vol.21, pp.1-10, 1995.

P. Fries, A. Müller, and R. Seidel, P03277-A new approach to achieve highcontrast enhancement: initial results of an experimental extracellular gadoliniumbased magnetic resonance contrast agent, Invest Radiol, vol.50, pp.835-842, 2015.

P. Balchandani and T. P. Naidich, Ultra-high-field MR neuroimaging, AJNR Am J Neuroradiol, vol.36, pp.1204-1215, 2015.

S. S. Lo and E. M. Gore, ACR Appropriateness Criteria® pre-irradiation evaluation and management of brain metastases, Expert Panel on Radiation Oncology-Brain Metastases, vol.17, pp.880-886, 2014.

W. T. Yuh, J. D. Engelken, and M. G. Muhonen, Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases, AJNR Am J Neuroradiol, vol.13, pp.335-345, 1992.

V. M. Runge, J. E. Kirsch, and V. J. Burke, High-dose gadoteridol in MR imaging of intracranial neoplasms, J Magn Reson Imaging, vol.2, pp.9-18, 1992.

V. M. Runge, J. W. Wells, and K. L. Nelson, MR imaging detection of cerebral metastases with a single injection of high-dose gadoteridol, J Magn Reson Imaging, vol.4, pp.669-673, 1994.

J. Hao, P. Bourrinet, and P. Desché, Assessment of pharmacokinetic, pharmacodynamic profile, and tolerance of gadopiclenol, a new high relaxivity GBCA, in healthy subjects and patients with brain lesions (Phase I/IIa Study), Invest Radiol, vol.54, pp.396-402, 2019.