A. Acharya, A model of crystal plasticity based on the theory of continuously distributed dislocations, Journal of the Mechanics and Physics of Solids, vol.49, pp.761-784, 2001.

A. Acharya, Driving forces and boundary conditions in continuum dislocation mechanics, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.459, pp.1343-1363, 2003.

A. Acharya, Constitutive analysis of finite deformation field dislocation mechanics, Journal of the Mechanics and Physics of Solids, vol.52, pp.301-316, 2004.

A. Acharya, New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale, Journal of the Mechanics and Physics of Solids, vol.58, pp.766-778, 2010.

A. Acharya and A. Roy, Size effects and idealized dislocation microstructure at small scales: Predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I, J. Mech. Phys. Solids, vol.54, pp.1687-1710, 2006.

A. Acharya and R. Arora, Dislocation pattern formation in finite deformation crystal plasticity, International Journal of Solids and Structures, 2019.

S. Berbenni, V. Taupin, K. S. Djaka, and C. Fressengeas, A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics, International Journal of Solids and Structures, vol.51, pp.4157-4175, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01515210

N. Bertin, M. V. Upadhyay, C. Pradalier, and L. Capolungo, A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics, Modelling Simul. Mater. Sci. Eng, vol.23, p.65009, 2015.

R. Brenner, A. J. Beaudoin, P. Suquet, and A. Acharya, Numerical implementation of static Field Dislocation Mechanics theory for periodic media, Philosophical Magazine, vol.94, pp.1764-1787, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00918607

S. Brisard and L. Dormieux, Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites, Comput. Methods Appl. Mech. Engrg, vol.217, issue.220, pp.197-212, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00722361

J. Cho, J. F. Molinari, and G. Anciaux, Mobility law of dislocations with several character angles and temperatures in FCC aluminum, International Journal of Plasticity, vol.90, pp.66-75, 2017.

A. Das, A. Acharya, and P. Suquet, Microstructure in plasticity without nonconvexity, Computational Mechanics, vol.57, pp.387-403, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01247613

K. S. Djaka, V. Taupin, S. Berbenni, and C. Fressengeas, A numerical spectral approach to solve the dislocation density transport equation. Modelling and Simulation in Materials Science and Engineering 23, p.65008, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01513871

K. S. Djaka, A. Villani, V. Taupin, L. Capolungo, and S. Berbenni, Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach, Computer Methods in Applied Mechanics and Engineering, vol.315, pp.921-942, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01947367

D. Garcia, Robust smoothing of gridded data in one and higher dimensions with missing values, Computational Statistics & Data Analysis, vol.54, pp.1167-1178, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01826117

S. Groh, E. B. Marin, M. F. Horstemeyer, and D. J. Bammann, Dislocation motion in magnesium: a study by molecular statics and molecular dynamics, Modelling and Simulation in Materials Science and Engineering, vol.17, p.75009, 2009.

I. Groma, F. F. Csikor, and M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Mater, vol.51, pp.1271-1281, 2003.

M. Gurtin, The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity, Journal of the Mechanics and Physics of Solids, vol.54, pp.1882-1898, 2006.

T. Hochrainer, S. Sandfeld, M. Zaiser, and P. Gumbsch, Continuum dislocation dynamics: Towards a physical theory of crystal plasticity, Journal of the Mechanics and Physics of Solids, vol.63, pp.167-178, 2014.

C. Hu and C. Shu, A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations, SIAM Journal on Scientific Computing, vol.21, pp.666-690, 1999.

D. Jeulin, Morphology and effective properties of multi-scale random sets: A review, Comptes Rendus Mécanique, vol.340, pp.219-229, 2012.

G. Jiang and D. Peng, Weighted ENO Schemes for Hamilton-Jacobi Equations, SIAM Journal on Scientific Computing, vol.21, pp.2126-2143, 2000.

Y. Kamimura, K. Edagawa, and S. Takeuchi, Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure, Acta Materialia, vol.61, pp.294-309, 2013.

L. P. Kubin, Dislocations, mesoscale simulations and plastic flow, Oxford Series on Materials Modelling, 2013.

L. P. Kubin and G. Canova, The modelling of dislocation patterns. Scripta Mater, vol.27, pp.957-962, 1992.

A. Kurganov, S. Noelle, and G. Petrova, Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations, SIAM Journal on Scientific Computing, vol.23, pp.707-740, 2001.

A. Kurganov and E. Tadmor, New High-Resolution Semi-discrete Central Schemes for Hamilton-Jacobi Equations, Journal of Computational Physics, vol.160, pp.720-742, 2000.

C. Lemarchand, B. Devincre, and L. P. Kubin, Homogenization method for a discretecontinuum simulation of dislocation dynamics, J. Mech. Phys. Solids, vol.49, pp.1969-1982, 2001.

G. Lepinoux and L. P. Kubin, The dynamic organization of dislocation structures: A simulation, Scripta Mater, vol.21, pp.833-838, 1987.

R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 2002.

C. Lin and E. Tadmor, High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations, SIAM Journal on Scientific Computing, vol.21, pp.2163-2186, 2000.

H. Moulinec and F. Silva, Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, International Journal for Numerical Methods in Engineering, vol.97, pp.960-985, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00787089

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Meth. Appl. Mech. Engng, vol.157, pp.69-94, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01282728

T. Mura, Micromechanics of defects in solids, 1982.

J. F. Nye, Some geometrical relations in dislocated crystals, Acta Metall, vol.1, pp.153-162, 1953.

E. Oren, E. Yahel, and G. Makov, Dislocation kinematics: a molecular dynamics study in Cu. Modelling and Simulation in Materials Science and Engineering 25, p.25002, 2017.

S. Osher and C. Shu, High-Order Essentially Nonoscillatory Schemes for Hamilton-Jacobi Equations, SIAM Journal on Numerical Analysis, vol.28, pp.907-922, 1991.

R. Peierls, The size of a dislocation, Proceedings of the Physical Society, vol.52, p.34, 1940.

G. Po, M. Mohamed, T. Crosby, C. Erel, A. El-azab et al., Recent progress in discrete dislocation dynamics and its applications to micro plasticity, JOM, vol.66, pp.2108-2120, 2014.

S. Puri, A. Das, and A. Acharya, Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics, Journal of the Mechanics and Physics of Solids, vol.59, pp.2400-2417, 2011.

J. Rossmanith, An Unstaggered, High Resolution Constrained Transport Method for Magnetohydrodynamic Flows, SIAM Journal on Scientific Computing, vol.28, pp.1766-1797, 2006.

A. Roy and A. Acharya, Finite element approximation of field dislocation mechanics, Journal of the Mechanics and Physics of Solids, vol.53, pp.143-170, 2005.

C. J. Ruestes, E. M. Bringa, R. E. Rudd, B. A. Remington, T. P. Remington et al., Probing the character of ultra-fast dislocations, Scientific Reports, vol.5, p.16892, 2015.

M. Schneider, On the Barzilai-Borwein basic scheme in FFT-based computational homogenization, Int. J. Numer. Methods Eng, vol.118, pp.482-494, 2019.

P. Valdenaire, Y. Le-bouar, B. Appolaire, and A. Finel, Density-based crystal plasticity: From the discrete to the continuum, Phys. Rev. B, vol.93, p.214111, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01407790

E. Van-der-giessen and A. Needleman, Discrete dislocation plasticity: a simple planar model, Modelling and Simulation in Materials Science and Engineering, vol.3, pp.689-735, 1995.

S. N. Varadhan, A. J. Beaudoin, A. Acharya, and C. Fressengeas, Dislocation transport using an explicit Galerkin/least-squares formulation. Modelling and Simulation in, Materials Science and Engineering, vol.14, pp.1245-1270, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00119274

J. R. Willis, Second-order effects of dislocations in anisotropic crystals, Int. J. Engng Sci, vol.5, pp.171-190, 1967.

S. Xia and A. El-azab, Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals, Modelling Simul. Mater. Sci. Eng, vol.23, p.55009, 2015.

H. M. Zbib, M. Rhee, and J. P. Hirth, On plastic deformation and the dynamics of 3D dislocations, International Journal of Mechanical Sciences, vol.40, pp.113-127, 1998.

X. Zhang, A. Acharya, N. J. Walkington, and J. Bielak, A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations, Journal of the Mechanics and Physics of Solids, vol.84, pp.145-195, 2015.