L. Gervais, N. De-rooij, and E. Delamarche, Microfluidic Chips for Point-of-Care Immunodiagnostics, Adv. Mater, vol.23, issue.24, p.151, 2011.

C. D. Chin, V. Linder, and S. K. Sia, Commercialization of microfluidic point-of-care diagnostic devices, Lab Chip, vol.12, p.2118, 2012.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, Lab-on-a-chip for drug development, Adv. Drug Deliv. Rev, vol.55, issue.3, p.349, 2003.

J. Ducrée, S. Haeberle, S. Lutz, S. Pausch, F. Von-stetten et al., The centrifugal microfluidic Bio-Disk platform, J. Micromech. Microeng, vol.17, issue.7, p.103, 2007.

S. Teh, R. Lin, L. Hung, and A. P. Lee, Droplet microfluidics, vol.8, issue.2, p.198, 2008.

A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices, Anal. Chem, vol.82, issue.1, p.3, 2010.

T. M. Squires and S. R. Quake, Microfluidics: Fluid physics at the nanoliter scale, vol.77, p.977, 2005.

A. Ghosh and S. Laws, Mechanics Over Micro and Nano Scales, p.61, 2011.

D. J. Beebe, G. Mensing, and G. M. Walker, Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng, vol.4, p.261, 2002.

F. M. White and I. Corfield, Viscous fluid flow 3, 2006.

J. S. Kuo and D. T. Chiu, Controlling Mass Transport in Microfluidic Devices, Annu. Rev. Anal. Chem, vol.4, issue.1, p.275, 2011.

N. L. Jeon, S. K. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock et al., Generation of solution and surface gradients using microfluidic systems, Langmuir, vol.16, issue.22, p.8311, 2000.

M. H. Werts, V. Raimbault, R. Texier-picard, R. Poizat, O. Français et al., Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures, Lab Chip, vol.12, issue.4, p.808, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00662353

M. H. Werts, V. Raimbault, M. Loumaigne, L. Griscom, O. Français et al., Optical microscopy and spectroscopy of analyte-sensitive functionalized gold nanoparticles in microfluidic systems, Colloidal Nanocrystals for biomedical applications VIII, Proc. SPIE, vol.8595, p.85950, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00809421

T. P. Lagus and J. F. Edd, A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics, J. Phys. D. Appl. Phys, vol.46, issue.11, p.114005, 2013.

H. Gu, M. H. Duits, and F. Mugele, Droplets formation and merging in two-phase flow microfluidics, Int. J. Mol. Sci, vol.12, issue.4, p.2572, 2011.

K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy, Lab Chip, vol.12, issue.3, p.515, 2012.

N. A. Mortensen, F. Okkels, and H. Bruus, Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels, Phys. Rev. E, vol.71, issue.5, p.57301, 2005.

T. Bourouina, A. Bosseboeuf, and J. Grandchamp, Design and simulation of an electrostatic micropump for drugdelivery applications, J. Micromech. Microeng, vol.7, issue.3, p.186, 1997.

M. A. Holden, S. Kumar, E. T. Castellana, A. Beskok, and P. S. Cremer, Generating fixed concentration arrays in a microfluidic device, Sensors & Actuators, B Chem, vol.92, issue.1-2, p.199, 2003.

Y. Wang, T. Mukherjee, and Q. Lin, Systematic modeling of microfluidic concentration gradient generators, J. Micromech. Microeng, vol.16, issue.10, p.2128, 2006.

N. Li-jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van-de-water et al., Neutrophil chemotaxis in linear and complex gradients of interleukin8 formed in a microfabricated device, Nat. Biotechnol, vol.20, issue.8, p.826, 2002.

J. P. Brody and P. Yager, Diffusion-based extraction in a microfabricated device, Sensors & Actuators A Phys, vol.58, issue.1, p.13, 1997.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson et al., Microfluidic diagnostic technologies for global public health, Nature, vol.442, issue.7101, p.412, 2006.

T. Schneider, J. Kreutz, and D. T. Chiu, The Potential Impact of Droplet Microfluidics in Biology, Anal. Chem, vol.85, issue.7, p.3476, 2013.

X. Casadevall-i-solvas and A. Demello, Droplet microfluidics: recent developments and future applications, Chem. Commun, vol.47, issue.7, p.1936, 2011.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device, Phys. Rev. Lett, vol.86, issue.18, p.4163, 2001.

S. L. Anna, N. Bontoux, and H. A. Stone, Formation of dispersions using 'flow focusing' in microchannels, Appl. Phys. Lett, vol.82, issue.3, p.364, 2003.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet based microfluidics, Reports Prog. Phys, vol.75, issue.1, p.16601, 2012.

R. Gorkin, J. J. Park, J. Siegrist, M. Amasia, B. S. Lee et al.,

. Cho, Centrifugal microfluidics for biomedical applications, Lab Chip, vol.10, issue.14, p.1758, 2010.

J. Ducrée, S. Haeberle, T. Brenner, T. Glatzel, and R. Zengerle, Patterning of flow and mixing in rotating radial microchannels, Microfluid. Nanofluidics, vol.2, issue.2, p.97, 2006.

M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim et al., Lab on a CD, Annu. Rev. Biomed. Eng, vol.8, issue.1, p.601, 2006.

O. Strohmeier, M. Keller, F. Schwemmer, S. Zehnle, D. Mark et al., Centrifugal microfluidic platforms: advanced unit operations and applications, Chem. Soc. Rev, vol.44, issue.17, p.6187, 2015.

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Patterned Paper as a Platform for Inexpensive, vol.46, p.1318, 2007.

Y. Xia, J. Si, and Z. Li, Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review, Biosens. Bioelectron, vol.77, p.774, 2016.

A. K. Yetisen, M. S. Akram, and C. R. Lowe, Paper-based microfluidic point-of-care diagnostic devices, Lab Chip, vol.13, issue.12, p.2210, 2013.

J. M. Berg, J. L. Tymoczoko, G. J. Gatto, and L. Stryer, Biochemistry, 2015.

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek et al., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminformatics, vol.4, p.17, 2012.

T. J. Smith, MOLView: A program for analyzing and displaying atomic structures on the Macintosh personal computer, J. Molecular Graphics, vol.13, issue.2, 1995.

, The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC, vol.3, 2018.

E. T. Bolton and J. Mccarthy, A General Method for the Isolation of RNA complementary to DNA, Proc. Natl. Acad. Sci, vol.48, p.1390, 1962.

A. H. Sturtevant, A History of Genetics, 2001.

A. Abbas, A. H. Lichtman, and S. Pillai, Cellular and Molecular Immunology, 2018.

X. L. Su and Y. Li, A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7, Biosensors and Biolectronics, vol.19, issue.6, p.563, 2004.

C. Prussin and D. D. Metcalfe, Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies, J. Immunol. Methods, vol.188, issue.1, p.117, 1995.

B. J. Takács, Protein Purification: Theoretical and Methodological Considerations, Encyclopedia of Analytical Chemistry : Applications, Theory and Instrumentation, 2006.

J. Gao, S. Ma, D. T. Major, K. Nam, J. Pu et al., Mechanisms and Free Energies of Enzymatic Reactions, Chem. Rev, vol.106, issue.8, p.3188, 2006.

D. Melloul, S. Marshak, and E. Cerasi, Regulation of insulin gene transcription, Diabetologia, vol.45, issue.3, p.309, 2012.

F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, J. Molecular Biology, vol.3, p.318, 1961.

S. Hoops, S. Sahle, R. Cauges, C. Lee, J. Pahle et al., Bioinformatics, vol.22, issue.24, p.3067, 2006.

Y. Gendrault, M. Madec, C. Lallement, and J. Haiech, Modeling biology with HDL languages: a first step toward a genetic design automation tool inspired from microelectronics, IEEE Trans. Biomed. Eng, vol.61, issue.4, p.1231, 2014.

J. Haiech, Y. Gendrault, M. C. Kilhoffer, R. Randjeva, M. Madec et al., A general framework improving teaching ligand binding to a macromolecule, Biochim. BioPhys. Acta, issue.10, p.2348, 2014.

J. N. Weiss, The Hill equation revisited : uses and misuses, the, FASEB Journal, vol.11, issue.11, p.835, 1997.

U. Alon, An introduction to systems biology : Design principles of biological circuits, 2006.

J. H. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, A particle image velocimetry system for microfluidics, Exp. in Fluids, vol.25, issue.4, p.316, 1998.

S. T. Wereley, J. G. Santiago, R. Chiu, C. D. Meinhart, and R. J. Adrian, Micro-resolution particle image velocimetry, in Proc Micro-and nanofabricated structure s and devices for biomedical environment applications, Proc. SPIE, vol.3258, p.122, 1998.

C. Cierpa and C. J. Kähler, Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics, J. Vis, vol.15, p.1, 2012.

S. T. Wereley and C. D. , Meinhart Recent advances in Micro-Particle Image Velocimetry, Annu. Rev. Fluid Mech, vol.42, p.557, 2010.

H. F. Li and M. Yoda, Multilayer nano-particle image velocimetry (MnPIV) in microscal Poiseille flows, Meas. Sci. Technol, vol.19, p.75402, 2008.

S. L. Anna, Droplets and bubbles in microfluidic devices, Annu. Rev. Fluid Mech, vol.48, p.285, 2016.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet based microfluidics, Rep. Prog. Phys, vol.75, p.16601, 2012.

M. Rossi, R. Lindken, B. P. Hierck, and J. Westerweel, Tapered microfluidic chip for the study of biochemical response at subcellular level of endothelial cell to shear flow, Lab on a Chip, vol.9, p.1403, 2009.

L. E. Rodd, J. J. Cooper-white, D. V. Boger, and G. H. Mckinley, Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricate contraction geometries, J. Non-Newtonian Fluid Mech, vol.143, pp.170-191, 2007.

, CRC Handbook of Chemistry and Physics, vol.98, 2017.

C. W. Macosko, Rheology: Principle, Measurements, and Application, 1994.

G. Astarita, G. Marrucci, and L. Nicolais, Rheology, vol.1, 1980.

H. A. Barnes, J. F. Hutton, and K. Walters, An introduction to rheology, 3 rd edn, vol.3, 1993.

P. De-gennes, F. Brochard-wyart, and D. Guere, Capillary and Wetting Phenomena -Drops, Bubbles, Pearls, Waves, 2004.

C. D. Meinhart, S. T. Wereley, and M. H. Gray, Volume illumination for two-dimensional particle image velocimetry, Meas. Sci. Technol, vol.11, p.809, 2000.

C. J. Bourdon, M. G. Olsen, and A. D. Gorby, Validation of an analytical solution for depth of correlation in microscopic particle image velocimetry, Meas. Sci. Technol, vol.15, p.318, 2004.

M. G. Olsen and R. J. Adrian, Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry, Exp. Fluids, pp.29-166, 2000.

O. Carrier, F. G. Ergin, H. Z. Li, B. B. Watz, and D. Funfschilling, Time-resolved mixing and flow-field measurements during droplet formation in a flow-focusing junction, J. Micromech. Microeng, vol.25, p.84014, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01266910

S. Devasenathipathy, J. G. Santiago, S. T. Wereley, C. D. Meinhart, and K. Takehara, Particle imaging techniques for microfabricated fluidic systems, Experiments in Fluids, vol.34, p.504, 2003.

V. Van-steijn, M. T. Kreutzer, and C. R. , Kleijn, µ-PIV study of the formation of segmented flow in microfluidic Tjunctions, Chem. Eng. Science, vol.62, p.7505, 2007.

D. Funfschilling, H. Debas, H. Z. Li, and T. G. Mason, Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics, Phys. Rev. E, vol.80, p.15301, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00508366

D. E. Smith and S. Chu, Response of flexible polymers to sudden elongational flow, Science, vol.281, p.1335, 1998.

L. Boussel, V. Rayz, C. Mcculloch, A. Martin, G. Acevedo-bolton et al., Aneurysm growth occurs at region of low wall shear stress, Stroke, vol.39, p.2997, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00443164

J. N. Tropper and M. A. Gimbrone, Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype, Molecular Medicine Today, vol.5, p.40, 1999.

C. Poelma, K. Van-der-heiden, B. P. Hierck, R. E. Poelmann, and J. Wersterweel, Measurements of the wall shear stress distribution in the outflow track of an embryonic chicken heart, J. R. Soc. Interface, vol.7, p.91, 2010.

C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, In vivo blood flow and wall shear stress measurements in vitelline network, Exp. Fluids, vol.45, p.703, 2008.

Y. Sugii, R. Okuda, K. Okamoto, and M. Takeda, Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique, Meas. Sci. Technol, vol.16, p.1126, 2005.

K. E. Audrey, T. P. Scott, C. S. Adam, A. M. Katherine, W. M. Andres et al.,

W. George, Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper, Analytical Chemistry, vol.81, issue.120, p.8447, 2009.

M. O'toole and D. Diamond, Absorbance Based Light Emitting Diode Optical Sensors and,sensing devices, Sensors, vol.8, p.2453, 2008.

A. Hsiao, M. R. Gartia, T. Chang, X. Wang, P. Khumwan et al., Colorimetric plasmon resonance microfluidics on nanohole array sensors, Sensing and Bio-Sensing Research, vol.5, p.24, 2015.

M. T. Koesdjojo, S. Pengpumkiat, Y. Wu, A. Boonloed, D. Huynh et al., Cost Effective Paper-Based Colorimetric Microfluidic Devices and Mobile Phone Camera Readers for the Classroom, J. Chem. Educ, vol.92, issue.4, p.737, 2015.

Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier et al., Smartphone-based colorimetric analysis for detection of saliva alcohol concentration, Appl. Opt, vol.54, issue.131, p.9183, 2015.

G. Minas, J. C. Ribeiro, R. F. Wolffenbuttel, and J. H. Correia, On-Chip Integrated CMOS Optical Detection Microsystem for Spectrophotometric Analyses in Biological Microfluidic Systems, IEEE International Symposium on Industrial Electronics, 2005.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3 rd Edn, 2006.

M. Kollner and J. Wolfrum, How many photon are necessary for fluorescence-lifetime measurements?, Chem. Phys. Lett, vol.200, issue.12, p.199, 1992.

H. Geng, J. Feng, L. M. Stabryla, and S. K. Cho, Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets, Lab Chip, vol.17, issue.6, p.1060, 2017.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman et al., The autofluorescence of plastic materials and chips measured under laser irradiation, Lab on a Chip, vol.12, p.1348, 2005.

G. D. Jeffries, R. M. Lorenz, and D. T. Chiu, Ultrasensitive and High-Throughput Fluorescence Analysis of Droplet Contents with Orthogonal Line Confocal Excitation, Anal Chem, vol.82, issue.23, p.9948, 2010.

L. Zeng, W. Jiang, D. Zheng, S. Li, J. Y. Yao et al., Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging, Opt. Lett, vol.36, p.2236, 2011.

P. S. Dittrich and P. Schwille, Spatial two-photon fluorescence crosscorrelation spectroscopy for controlling molecular transport in microfluidic structures, Anal Chem, vol.74, p.4472, 2002.

A. Streets and Y. Huang, Microfluidics for biological measurements with single-molecule resolution, Current Opinion in Biotechnology, vol.25, p.2014, 2014.

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-curtis, Y. Qiu et al., Microscope-based label-free microfluidic cytometry, Optics Express, vol.19, issue.1, p.387, 2011.

Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes, Sensors and Actuators B: Chemical, vol.98, issue.2-3, 2004.

M. L. Chabinyc, D. T. Chiu, J. C. Mcdonald, A. D. Stroock, J. F. Christian et al.,

. Whitesides, An Integrated Fluorescence Detection System in Poly(dimethylsiloxane) for Microfluidic Applications, Anal. Chem, vol.73, p.4481, 2001.

P. Ghenuche, J. Torres, P. Ferrand, and J. Wenger, Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays, Appl. Phys. Lett, vol.105, p.131102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069861

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, and T. H. Wu, Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection, Biomicrofluidics, vol.7, p.44121, 2013.

E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array, Optics Express, vol.19, issue.2, p.1385, 2011.

S. Ursuegui, M. Mosser, and A. Wagner, Copper-free click chemistry for microdroplet's W/O interface engineering, RSC Advances, vol.6, issue.97, p.94942, 2016.

P. Gruner, B. Riechers, B. Semin, J. Lim, A. Johnston et al., Controlling molecular transport in minimal emulsions, Nature Communications, vol.7, p.10392, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276355

M. S. Art, A. J. Demello, and J. B. Edel, High-Throughput DNA Droplet Assays Using Picoliter Reactor Volumes, Anal. Chem, vol.79, issue.17, p.6682, 2007.

W. Uhring, V. Zint, and J. Bartringer, A low-cost high-repetition-rate picosecond laser diode pulse generator, Semiconductor lasers and laser dynamics, vol.5452, p.583, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00134579

P. B. Coates, The correction for photon 'pile-up' in the measurement of radiative lifetime, J. Physics E: Sci. Instrum, vol.1, issue.8, p.878, 1968.

J. Leonard, N. Dumas, J. P. Caussé, S. Maillot, N. Giannakopoulou et al., Highthroughput time-correlated single photon counting, Lab-on-Chip, vol.14, issue.22, p.4297, 2014.

I. Santi, N. Dhar, D. Bousbaine, Y. Wakamoto, and J. D. Mckinney, Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria, Nat. commun, vol.4, p.2470, 2013.

Y. Zhao, D. Chen, H. Yue, M. M. Spiering, C. Zhao et al., Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions, vol.14, p.1952, 2014.

G. Giraud, H. Schulze, D. Li, T. T. Bachmann, J. Crain et al., Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager, Biomed. Opt. Express, vol.1, pp.1302-1308, 2010.

Y. Ding, S. Stavrakis, X. Solvas, and A. J. Demello, A high throughput droplet-based microfluidic barcode generator, 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp.27-31, 2013.

M. Zlatanski, W. Uhring, and J. Normand, Sub-500-ps Temporal Resolution Streak-Mode Optical Sensor, IEEE Sensors Journal, vol.15, issue.11, p.6570, 2015.

Q. Zhoua and T. Kima, Review of microfluidic approaches for surface-enhanced Raman scattering, Sensors and Actuators B: Chemical, vol.227, 2016.

O. J. Miller, T. Harrak, J. Mangeat, L. Baret, B. E. Frenz et al.,

P. Rooney, M. Dieu, D. R. Galvan, A. D. Link, and . Griffiths, High-resolution dose-response screening using droplet-based microfluidics, Proc Natl Acad Sci U S A, vol.109, issue.2, pp.378-383, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02136487

J. Baret, O. J. Miller, V. Taly, M. Ryckelynck, A. El-harrak et al.,

J. J. Hutchison, D. R. Agresti, D. A. Link, A. D. Weitz, and . Griffiths, Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity, pp.1850-1858, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02148757