R. C. Shit, S. Sharma, D. Puthal, and A. Y. Zomaya, Location of Things (LoT): A review and taxonomy of sensors localization in IoT infrastructure, IEEE Commun. Surv. Tutor, vol.20, pp.2028-2061, 2018.

L. Atzori, A. Iera, and G. Morabito, The internet of things: A survey, Comput. Netw, vol.54, pp.2787-2805, 2010.

S. Vuppala and . Ubiquitous, Secure Internet-of-Things with Location and contEx-awaReness, BUTLER Proj, vol.2, pp.1-171, 2018.

D. Ciuonzo, P. S. Rossi, and P. Willett, Generalized Rao test for decentralized detection of an uncooperative target, IEEE Signal Process. Lett, vol.24, pp.678-682, 2017.

B. Dil, S. Dulman, and P. Havinga, Range-based localization in mobile sensor networks, European Workshop on Wireless Sensor Networks, pp.164-179, 2006.

S. P. Singh and S. C. Sharma, Range free localization techniques in wireless sensor networks: A review, Procedia Comput. Sci, vol.57, pp.7-16, 2015.

S. H. Javadi, H. Moosaei, and D. Ciuonzo, Learning Wireless Sensor Networks for Source Localization, Sensors, vol.19, 2019.

N. Bulusu, J. Heidemann, and D. Estrin, GPS-less low-cost outdoor localization for very small devices, IEEE Pers. Commun, vol.7, pp.28-34, 2000.

J. H. Huh and K. Seo, An indoor location-based control system using bluetooth beacons for IoT systems, Sensors, vol.17, 2017.

A. Alarifi, A. Al-salman, M. Alsaleh, A. Alnafessah, S. Al-hadhrami et al., Ultra wideband indoor positioning technologies: Analysis and recent advances, Sensors, vol.16, p.707, 2016.

Z. Chen and C. Wang, Modeling RFID signal distribution based on neural network combined with continuous ant colony optimization, Neurocomputing, vol.123, pp.354-361, 2014.

A. Shokry, M. Elhamshary, and M. Youssef, The tale of two localization technologies: Enabling accurate low-overhead WiFi-based localization for low-end phones, Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p.42, 2017.

X. Zhang, H. Sun, S. Wang, and J. Xu, A New Regional Localization Method for Indoor Sound Source Based on Convolutional Neural Networks, IEEE Access, vol.6, pp.72073-72082, 2018.

Y. Sun, J. Chen, C. Yuen, and S. Rahardja, Indoor sound source localization with probabilistic neural network, IEEE Trans. Ind. Electron, vol.65, pp.6403-6413, 2018.

M. Patel, B. Emery, Y. Y. Chen, and . Contextualnet, Exploiting Contextual Information Using LSTMs to Improve Image-Based Localization, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp.1-7, 2018.

W. Ling, . Chen-chi-hua, and Q. Zhang, A Mobile Positioning Method Based on Deep Learning Techniques, vol.8, p.59, 2019.

R. Elbakly, H. Aly, M. Youssef, and . Truestory, Accurate and robust RF-based floor estimation for challenging indoor environments, IEEE Sens. J, vol.18, pp.10115-10124, 2018.

W. Shao, H. Luo, F. Zhao, Y. Ma, Z. Zhao et al., Indoor positioning based on fingerprint-image and deep learning, IEEE Access, vol.6, pp.74699-74712, 2018.

T. Zeng, Y. Chang, Q. Zhang, M. Hu, and J. Li, CNN-Based LOS/NLOS Identification in 3-D Massive MIMO Systems, IEEE Commun. Lett, vol.22, pp.2491-2494, 2018.

C. Cai, L. Deng, M. Zheng, S. Li, and . Pilc, Passive Indoor Localization Based on Convolutional Neural Networks, Proceedings of the Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), pp.1-6, 2018.

D. Niculescu and B. Nath, Ad hoc positioning system (APS) using AOA, Proceedings of the Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM), pp.1734-1743, 2003.

T. C. Karalar and J. Rabaey, An rf tof based ranging implementation for sensor networks, Proceedings of the IEEE International Conference on Communications, pp.3347-3352, 2006.

X. Cheng, A. Thaeler, G. Xue, and D. Chen, TPS: A time-based positioning scheme for outdoor wireless sensor networks, Proceedings of the IEEE INFOCOM, pp.2685-2696, 2004.

Z. Yang and Y. Liu, Quality of trilateration: Confidence-based iterative localization, IEEE Trans. Parallel Distrib. Syst, vol.21, pp.631-640, 2010.

Y. Gu, M. Chen, F. Ren, J. Li, and . Hed, Handling environmental dynamics in indoor WiFi fingerprint localization, Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), pp.1-6, 2016.

D. P. Kumar, T. Amgoth, and C. S. Annavarapu, Machine learning algorithms for wireless sensor networks: A survey, Inf. Fusion, vol.49, pp.1-25, 2019.

K. Bregar and M. Mohor?i?, Improving indoor localization using convolutional neural networks on computationally restricted devices, IEEE Access, vol.6, pp.17429-17441, 2018.

B. Zhou, J. Yang, and Q. Li, Smartphone-Based Activity Recognition for Indoor Localization Using a Convolutional Neural Network, Sensors, vol.19, p.621, 2019.

Y. Li, Z. Gao, Z. He, Y. Zhuang, A. Radi et al., Wireless Fingerprinting Uncertainty Prediction Based on Machine Learning, Sensors, vol.19, 2019.

M. Abbas, M. Elhamshary, H. Rizk, M. Torki, M. Youssef et al., WiFi-based accurate and robust indoor localization system using deep learning, Proceedings of the IEEE PerCom, pp.11-15, 2019.

B. A. Akram, A. H. Akbar, O. Shafiq, and . Hybloc, Hybrid indoor Wi-Fi localization using soft clustering-based random decision forest ensembles, IEEE Access, vol.6, 2018.

P. Kumar, L. Reddy, and S. Varma, Distance measurement and error estimation scheme for RSSI based localization in Wireless Sensor Networks, Proceedings of the Fifth International Conference on Wireless Communication and Sensor Networks (WCSN), pp.1-4, 2009.

Z. Chen, F. Xia, T. Huang, F. Bu, and H. Wang, A localization method for the Internet of Things, J. Supercomput, vol.63, pp.657-674, 2013.

R. Leonardo, M. Barandas, and H. Gamboa, A Framework for Infrastructure-Free Indoor Localization Based on Pervasive Sound Analysis, IEEE Sens. J, vol.18, pp.4136-4144, 2018.

S. Dayekh, S. Affes, N. Kandil, and C. Nerguizian, Cooperative localization in mines using fingerprinting and neural networks, Proceedings of the IEEE Wireless Communication and Networking Conference, pp.1-6, 2010.

X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, Identification of maize leaf diseases using improved deep convolutional neural networks, IEEE Access, vol.6, pp.30370-30377, 2018.

S. J. Lee, T. Chen, L. Yu, and C. H. Lai, Image classification based on the boost convolutional neural network, IEEE Access, vol.6, pp.12755-12768, 2018.

M. Ibrahim, M. Torki, and M. Elnainay, CNN based indoor localization using RSS time-series, Proceedings of the IEEE Symposium on Computers and Communications (ISCC), pp.25-28, 2018.

C. Gu, H. Du, S. Cai, and X. Chen, Joint multiple image parametric transformation estimation via convolutional neural networks, IEEE Access, vol.6, pp.18822-18831, 2018.

W. Quan, K. Wang, D. M. Yan, and X. Zhang, Distinguishing between natural and computer-generated images using convolutional neural networks, IEEE Trans. Inf. Forensics Secur, vol.13, pp.2772-2787, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01789442

M. Aykanat, Ö. K?l?ç, B. Kurt, and S. Saryal, Classification of lung sounds using convolutional neural networks. EURASIP J. Image Video Process, vol.65, 2017.

J. W. Jang and S. N. Hong, Indoor Localization with WiFi Fingerprinting Using Convolutional Neural Network, Proceedings of the Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp.753-758, 2018.

A. Valada, N. Radwan, and W. Burgard, Deep auxiliary learning for visual localization and odometry, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp.6939-6946, 2018.

R. C. Luo and W. Shih, Autonomous Mobile Robot Intrinsic Navigation Based on Visual Topological Map, Proceedings of the IEEE 27th International Symposium on Industrial Electronics (ISIE), pp.541-546, 2018.

N. Akail, L. Y. Moralesl, and H. Murase, Reliability estimation of vehicle localization result, Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp.740-747, 2018.

H. Sinha, J. Patrikar, E. G. Dhekane, G. Pandey, and M. Kothari, Convolutional Neural Network Based Sensors for Mobile Robot Relocalization, Proceedings of the 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp.774-779, 2018.

H. Chen, Y. Zhang, W. Li, X. Tao, P. Zhang et al., Convolutional neural networks based indoor Wi-Fi localization using channel state information, IEEE Access, vol.5, pp.18066-18074, 2017.

P. Pivato, L. Palopoli, and D. Petri, Accuracy of RSS-based centroid localization algorithms in an indoor environment, IEEE Trans. Instrum. Meas, vol.60, pp.3451-3460, 2011.

H. Laitinen, S. Juurakko, T. Lahti, R. Korhonen, and J. Lahteenmaki, Experimental evaluation of location methods based on signal-strength measurements, IEEE Trans. Veh. Technol, vol.56, pp.287-296, 2007.

J. Torres-sospedra, A. Jiménez, A. Moreira, T. Lungenstrass, W. C. Lu et al., Off-line evaluation of mobile-centric indoor positioning systems: The experiences from the 2017 IPIN competition, Sensors, vol.18, 2018.

S. H. Fang, Y. C. Cheng, and Y. R. Chien, Exploiting sensed radio strength and precipitation for improved distance estimation, IEEE Sens. J, vol.18, pp.6863-6873, 2018.

Z. C. Lipton and J. Steinhardt, Troubling trends in machine learning scholarship, 2018.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, How does batch normalization help optimization?, Proceedings of the Neural Information Processing Systems, pp.3-8, 2018.

P. H. Westfall, Kurtosis as peakedness, RIP. Am. Stat, vol.68, pp.191-195, 2014.

R. Ujjwalkarn, The Data Science Blog. An Intuitive Explanation of Convolutional Neural Networks, p.20, 2018.

S. Ruder, An overview of gradient descent optimization algorithms, 2016.

G. Hinton, N. Srivastava, and K. Swersky, Neural networks for machine learning lecture 6a overview of mini-batch gradient descent, vol.14, p.20, 2012.

D. P. Kingma, J. Ba, and . Adam, A method for stochastic optimization. arXiv, 2014.

M. Tsai, Path-loss and shadowing (large-scale fading). Natl. Taiwan Univ, p.12, 2011.

J. Appleyard, T. Kocisky, and P. Blunsom, Optimizing performance of recurrent neural networks on gpus, 2016.

M. Li, T. Zhang, Y. Chen, and A. J. Smola, Efficient mini-batch training for stochastic optimization, Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.661-670, 2014.

J. Brownlee, . Machine-learning, and . Mastery, How to Control the Speed and Stability of Training Neural Networks with Gradient Descent Batch Size, 2019.

M. Kulin, C. Fortuna, E. De-poorter, and D. Deschrijver, Moerman, I. Data-driven design of intelligent wireless networks: An overview and tutorial, Licensee MDPI, vol.16, 2016.