D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman et al., Concrete problems in AI safety, 2016.

K. Beyer and J. Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is "nearest neighbor" meaningful? In ICDT, 1999.

J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte et al., Alberto Sanchis, and Nicola Ueffing. Confidence estimation for machine translation, COLING, 2004.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, Weight uncertainty in neural networks, ICML, 2015.

J. Gabriel, J. Brostow, R. Fauqueur, and . Cipolla, Semantic object classes in video: A high-definition ground truth database, Pattern Recogn. Lett, vol.30, issue.2, pp.88-97, 2009.

T. Devries, W. Graham, and . Taylor, Learning confidence for out-of-distribution detection in neural networks, 2018.

T. Durand, N. Thome, and M. Cord, Mantra: Minimum maximum latent structural SVM for image classification and ranking, ICCV, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01343784

R. El-yaniv and Y. Wiener, On the foundations of noise-free selective classification, J. Mach. Learn. Res, vol.11, issue.8, pp.1605-1641, 2010.

Y. Gal, Uncertainty in Deep Learning, 2016.

Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing model uncertainty in deep learning, ICML, vol.6, p.7, 2016.

Y. Geifman and R. El-yaniv, Selective classification for deep neural networks, NIPS, vol.5, 2017.

J. Ian and . Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples, 2014.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, On calibration of modern neural networks, ICML, vol.2, p.5, 2017.

L. Han, Y. Zou, R. Gao, L. Wang, and D. Metaxas, Unsupervised domain adaptation via calibrating uncertainties, CVPR Workshops, 2019.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos et al., Deep speech: Scaling up end-to-end speech recognition, 2014.

S. Hecker, D. Dai, and L. Van-gool, Failure prediction for autonomous driving, IV, 2018.

D. Hendrycks and K. Gimpel, A baseline for detecting misclassified and out-of-distribution examples in neural networks, ICLR, vol.6, p.7, 2005.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed et al., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal Processing Magazine, vol.29, issue.6, pp.82-97, 2012.

J. Janai, F. Güney, A. Behl, and A. Geiger, Computer vision for autonomous vehicles: Problems, datasets and state-of-the-art, 2017.

H. Jiang, B. Kim, M. Guan, and M. Gupta, To trust or not to trust a classifier, NIPS, vol.6, p.7, 2005.

A. Kendall, V. Badrinarayanan, and R. Cipolla, Bayesian SegNet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding, vol.5, p.6, 2015.

A. Kendall and Y. Gal, What uncertainties do we need in Bayesian deep learning for computer vision, NIPS, 2017.

A. Kendall, Y. Gal, and R. Cipolla, Multi-task learning using uncertainty to weigh losses for scene geometry and semantics, CVPR, 2009.

A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, NIPS, 2012.

B. Lakshminarayanan, A. Pritzel, and C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, Advances in Neural Information Processing Systems, vol.30, p.6, 2017.

Y. Lecun and C. Cortes, The MNIST database of handwritten digits

K. Lee, H. Lee, K. Lee, and J. Shin, Training confidence-calibrated classifiers for detecting out-of-distribution samples, ICLR, 2018.

Q. Li, P. Ness, A. Ragni, and M. J. Gales, Bi-directional lattice recurrent neural networks for confidence estimation, IEEE International Conference on Acoustics, Speech and Signal Processing, 2018.

S. Liang, Y. Li, and R. Srikant, Enhancing the reliability of out-of-distribution image detection in neural networks, In ICLR, vol.2, p.5, 2018.

T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense object detection, ICCV, 2017.

O. Linda, T. Vollmer, and M. Manic, Neural network based intrusion detection system for critical infrastructures, IJCNN, 2009.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed et al., SSD: Single shot multibox detector, ECCV, 2016.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, 2013.

T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, Recurrent neural network based language model, INTERSPEECH, p.1, 2010.

P. Mohapatra, C. V. Rolínek, V. Jawahar, M. Kolmogorov, and . Kumar, Efficient optimization for rank-based loss functions, CVPR, 2004.

T. Mordan, N. Thome, G. Henaff, and M. Cord, End-to-end learning of latent deformable part-based representations for object detection, International Journal of Computer Vision, pp.1-21, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01842031

T. Mordan, N. Thome, G. Henaff, and M. Cord, Revisiting multi-task learning with ROCK: a deep residual auxiliary block for visual detection, NIPS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01922291

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu et al., Reading digits in natural images with unsupervised feature learning, NIPS Workshop, 2011.

L. Neumann, A. Zisserman, and A. Vedaldi, Relaxed softmax: Efficient confidence autocalibration for safe pedestrian detection, NIPS Workshops, vol.2, p.5, 2018.

A. Mai-nguyen, J. Yosinski, and J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, CVPR, 2015.

A. Ragni, Q. Li, M. J. Gales, and Y. Wang, Confidence estimation and deletion prediction using bidirectional recurrent neural networks, In SLT Workshop, issue.5, 2018.

K. Shaoqing-ren, R. He, J. Girshick, and . Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, NIPS, 2015.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan et al., Intriguing properties of neural networks, In ICLR, issue.2, 2014.

T. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, ADVENT: Adversarial entropy minimization for domain adaptation in semantic segmentation, CVPR, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01942465