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Lattice-Reduction-Aided Equalization for
MIMO-FBMC systems

Rostom Zakaria, Danilo Silva, and Didier Le Ruyet,

Abstract—In this paper, we propose to use a lattice reduction
(LR) approach to enhance the performance of spatial multi-
plexing (SM) multiple-input multiple-output (MIMO) systems
using filter-bank multicarrier (FBMC) modulation. It is known
that lattice-reduction-aided (LRA) MIMO receivers can achieve
full spatial diversity. On the other hand, the presence of the
intrinsic interference in FBMC is widely regarded as a factor that
prevents the system from taking advantage of spatial diversity
when combined with SM-MIMO. We will show that with an
adequate adaptation to FBMC modulation, the LR approach can
be performed in a straightforward manner. Simulation results
show that an LRA equalizer allows an FBMC-MIMO system to
benefit more from the available spatial diversity and offers an
interesting performance gain compared to the existing solutions
with reasonable complexity.

Index Terms—FBMC/OQAM, Filter-bank, MIMO, Lattice re-
duction, Spatial Multiplexing.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM)
modulation has been widely used in wireless communication
systems for the past decades. The large diversity of services of
the next generation wireless systems ranging from the high-
rate mobile broadband to ultra-high reliability communications
and the multi-service dimension of next generation mobile
network require better spectrum localization and robustness to
time asynchronism access. Post-OFDM waveforms have to be
designed to cope with these requirements. Among the differ-
ent candidates, Filter-Bank Multi-Carrier (FBMC) modulation
achieves the maximum spectral efficiency with a frequency-
localized pulse shape filter [1]. However, these features are
obtained to the detriment of the complex orthogonality. Each
demodulated data symbol is accompanied with the so-called
intrinsic interference coming from the neighboring transmitted
symbols. To cope with the intrinsic interference, FBMC is
commonly associated with the Offset-Quadrature Amplitude
Modulation (FBMC/OQAM or OFDM/OQAM) to restrict the
orthogonality to the real field. The data at the receiver side
is carried only by the real component of the signal. The
imaginary part appears as an intrinsic interference term. The
presence of this interference prevents the combination with
some multiple-input/multiple-output (MIMO) techniques such
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as space-time block coding and spatial multiplexing (SM) with
maximum likelihood (ML) detection [2] [3]. However, linear
equalization based on zero forcing (ZF) or minimum-mean
square error (MMSE) criteria can be easily performed by
considering that the intrinsic interference term together with
the useful data symbol form a single virtual symbol [4].

Contrary to ZF and MMSE receivers, lattice-reduction-
aided (LRA) equalization [5] allows to reach the optimum
diversity behavior. Lattice reduction approach searches for a
suitable equivalent basis for a given lattice spanned by the
columns of the MIMO channel matrix. This equivalent basis
has a smaller orthogonality defect, which in turn is more
suitable for component-wise symbol decision. In each layer,
the decided symbol is a Gaussian integer linear combination
of the transmitted symbols. Different LRA algorithms have
been proposed such as the Lenstra-Lenstra-Lovasz (LLL) [6]
or Minkowski reduction [7] [8].

In this work, we propose to apply LRA MIMO equaliza-
tion to the received FBMC/OQAM signals. To the best of
our knowledge, there is no existing work that attempts to
equalize the FBMC/OQAM SM-MIMO signals by using the
lattice reduction approach. A major difficulty is the fact that,
contrarily to the useful data symbols, the intrinsic interferences
do not belong to a lattice. Therefore, it is not possible to
find a Gaussian integer transformation that connects the virtual
transmitted symbols (useful and interference terms) with the
decided ones. In this letter, we propose to restrict the linear
integer transformation to be real instead of complex. Thus, the
useful data symbols and the intrinsic interferences can still be
separable after the integer transformation.

The rest of the paper is organized as follows. Section II
gives a brief overview of lattice-reduction-aided (LRA) MIMO
equalization. The simplified system model of the MIMO
FBMC/OQAM is introduced in section III. Then, we derive
and present in Section IV our proposed MIMO LRA equalizer
for FBMC/OQAM. Section V is dedicated for simulation
results where we compare the proposed solution to the existing
ones. Finally, we present concluding remarks in Section VI.

II. LATTICE-REDUCTION-AIDED MIMO EQUALIZATION

Assume a classical MIMO system using spatial multiplexing
with Nt transmit and Nr receive antennas. Complex-valued
symbols sp (p = 1, ..., Nt), of variance σ2

s and drawn from a
QAM constellation, are simultaneously radiated over the Nt
transmit antennas. Let us denote the transmitted Nt dimen-
sional vector as s, the Nr ×Nt channel matrix as H, and the
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Nr dimensional noise vector as z. Then, the received vector
y is expressed as:

y = Hs + z. (1)

The entries of z are complex-valued Gaussian noise with zero-
mean and variance of σ2

z . The set L(H) = {Hs | s ∈ GNt}1

generated by the channel matrix H is an Nt-dimensional
lattice in CNr . Lattice reduction allows to find a new basis
C for the same lattice L(H) such that the new basis vectors
are shorter and nearly orthogonal. To this end, the matrix H
is factorized as

H = CA (2)

where A ∈ GNt×Nt is a Gaussian integer linear transforma-
tion and unimodular (|det(A)| = 1). Therefore, the received
vector y is rewritten as:

y = CAs + z = Cs̄ + z (3)

where s̄ = As is the symbol vector to be recovered at the
receiver. Note that since C is chosen to be nearly orthogonal,
recovering s̄ instead of s has the advantage to avoid severe
noise enhancement [9]. Hence, The corresponding MMSE
equalization matrix B is given by

B =
(
CHC + ξA−HA−1

)−1
CH (4)

where ξ = σ2
z/σ

2
s . Then, detection of s̄ is done in a

component-wise manner by mapping each element of the
vector By to the closest Gaussian integer. Finally, having
the detection results, an estimate of the transmit symbols is
obtained via ŝ = A−1ˆ̄s.

III. MIMO FBMC/OQAM SYSTEM MODEL

FBMC/OQAM is a multicarrier modulation where the real
and imaginary parts of the QAM symbols sk,2n, in each
subcarrier k, are staggered to form a sequence of real-valued
data symbols xk,n, with n being the time index. With M
subcarriers, the signal xk,n in each subcarrier k is upsampled
by M/2 and then filtered by using a prototype filter g[m]
of length KM , where m is the sampling time index and K
is an integer denoting the overlapping factor. The baseband
transmitted signal can be then given by [2]:

s[m] =
∑
n

M−1∑
k=0

xk,ng[m− nM/2]ej2π
km
M ejφk,n (5)

where φk,n is a phase term. After passing through a Rayleigh
selective channel, the received signal y[m] is demodulated as:

yk,n =
∑
m

y[m]g[m− nM/2]e−j2π
km
M e−jφk,n (6)

After developments, we can show that the expression of the
demodulated signals yk,n becomes [2], [4]:

yk,n = hk,nxk,n + hk,n

M−1∑
k′=0

∑
n′

xk′,n′Γk,n,k′,n′ + zk,n (7)

1G stands for the set of Gaussian integers and is defined as G = Z+ jZ.

where zk,n and hk,n are, respectively, the noise term at the
demodulator output and the channel frequency response. The
function Γk,n,k′,n′ is the so-called transmultiplexer impulse
response and is given by [2]:

Γk,n,k′,n′ =
∑
m

g[m− nM/2]g[m− n′M/2]ej
2πm
M (k−k′)

× ejφk,n−jφk′,n′ (8)

The phase term φk,n is chosen so that Re{Γk,n,k′,n′} = 0
∀(k, n) 6= (k′, n′). Therefore, the intrinsic interference term
in (7) is purely imaginary and the equation can be rewritten
as [2]:

yk,n = hk,n(xk,n + juk,n) + zk,n (9)

where the term uk,n is real-valued.
In the MIMO spatial multiplexing case with Nt transmit

and Nr receive antennas, real-valued data symbol x(p)k,n are
transmitted at the pth antenna, with p = 1, ..., Nt. The
demodulated symbol y(q)k,n at the qth antenna and frequency-
time position (k, n) is expressed as:

y
(q)
k,n =

Nt∑
p=1

h
(qp)
k,n (x

(p)
k,n + ju

(p)
k,n) + z

(q)
k,n (10)

In a matrix form and skipping the frequency-time indices
(k, n), the FBMC/OQAM MIMO system model is given by:

y = H(x + ju) + z (11)

where x ∈ RNt×1 is the vector of transmitted symbols, u ∈
RNt×1 is the corresponding FBMC intrinsic interference, z ∈
CNr×1 is zero-mean circularly-symmetric complex Gaussian
noise, H ∈ CNr×Nt is the channel matrix, and y ∈ CNr×1 is
the vector of received symbols.

IV. LRA EQUALIZATION FOR FBMC/OQAM

In this section, we propose an LRA equalization adapted
for FBMC/OQAM MIMO systems. In the context of spatial
multiplexing, the transmit data symbols in the vector x are
assumed to be uncorrelated and have the same variance
σ2
x. Consequently and according to (7), the entries of the

interference vector u are also uncorrelated and have the
same variance σ2

u. It is shown in [10] that in FBMC/OQAM
the intrinsic interference and the data symbol have the
same variance (i.e σ2

x = σ2
u). Moreover, the data symbols

in each transmit antenna and for different subcarriers and
time indices are assumed to be uncorrelated. Hence, the
vectors x and u are pairwise orthogonal. That is, we have
E[xxT ] = E[uuT ] = σ2

xI and E[xuT ] = 0. As for the
noise term z, it is assumed to be i.i.d. with variance σ2 per
real/imaginary component, i.e., E[zzH ] = 2σ2I, and that it
is orthogonal to both x and u, i.e., E[zxT ] = E[zuT ] = 0.
We define γ = Ntσ

2
x/σ

2 as the average signal to noise ratio
(SNR) at each receive antenna.

As mentioned in Section II, LRA equalization is based on
factorizing the matrix channel H as in (2), which yields

y = CA(x + ju) + z. (12)
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Then, after equalizing the reduced channel C, decisions should
be made to recover the vector A(x + ju). However, due to
the nature of the interference vector u, decisions cannot be
made on A(x + ju) as it does not belong to a regular lattice.
To overcome this issue, we propose to restrict A to be (real)
integer matrix instead of Gaussian integer one. This allows us
to recover Ax by making decisions on Re{A(x + ju)}.

For a given A ∈ ZNt×Nt , we apply an equalization matrix
B to the received vector y, giving

By = BH(x + ju) + Bz

= A(x + ju) + (BH−A)(x + ju) + Bz. (13)

Taking the real part, we have

r = Re{By}
= Ax + zeff (14)

where
zeff = Re{(BH−A)(x + ju) + Bz}

is the so-called effective noise. The objective is to minimize
the effective noise variance in each layer. Therefore, the
remaining task is to select matrices B and A that minimize
the diagonal entries of the effective noise covariance matrix
Keff = E[zeffz

T
eff].

To begin with, let us write z = zre + jzim, H = Hre + jHim
and B = Bre − jBim, where all the components are real. We
can derive zeff as follows:

zeff = Re{(BH−A)(x + ju) + Bz}
= (Re{BH} −A)x− Im{BH}u + Re{Bz}
= (BreHre + BimHim −A)x− (BreHim −BimHre)u

+ Brezre + Bimzim

= (B̄H̄− Ā)x̄ + B̄z̄ (15)

where

B̄ =
[
Bre Bim

]
, H̄ =

[
Hre −Him
Him Hre

]
, z̄ =

[
zre
zim

]
x̄ =

[
x
u

]
, Ā =

[
A 0

]
.

Now, since E[x̄x̄T ] = σ2
xI, E[z̄z̄T ] = σ2I, and E[x̄z̄T ] =

0, we can write the covariance matrix of the effective noise
as follows:

Keff = E[zeffz
T
eff]

= E[((B̄H̄− Ā)x̄ + B̄z̄)((B̄H̄− Ā)x̄ + B̄z̄)T ]

= (B̄H̄− Ā)(B̄H̄− Ā)Tσ2
x + B̄B̄Tσ2. (16)

That is,

Keff/σ
2 = (B̄H̄− Ā)(B̄H̄− Ā)T

γ

Nt
+ B̄B̄T . (17)

As it is known from [11], for a fixed integer matrix A the
diagonal entries of Keff are minimized by choosing

B̄ = ĀH̄T
(
Ntγ

−1I + H̄H̄T
)−1

(18)

or equivalently

B = AHH
(
Ntγ

−1I + HHH
)−1

.

By plugging (18) into (17), we can show that [11]

Keff/σ
2 = Ā

(
Ntγ

−1I + H̄T H̄
)−1

ĀT

= ĀM̄ĀT , (19)

where
M̄ =

(
Ntγ

−1I + H̄T H̄
)−1

.

We can also rewrite expression (19) as:

Keff/σ
2 = AMAT (20)

with
M = Re

{(
Ntγ

−1I + HHH
)−1}

.

Therefore, the effective noise variance in each layer i (which
is the ith diagonal element of Keff) is given by

σ2
zeff(i)

= σ2aTi Mai, (21)

where ai is the ith column vector of AT . Since M is a
real-valued and symmetric positive definite matrix, we can
write M = LTL for some L ∈ RNt×Nt via Cholesky
decomposition. Hence, (21) becomes

σ2
zeff(i)

= σ2‖Lai‖2.

Therefore, to construct the optimal integer matrix A, we have
to obtain Nt vectors ai which result in the first Nt smaller
norms ‖Lai‖ along with the unimodular property on A (i.e.
det(A) = ±1) [8]. This problem corresponds to finding a
shortest basis for the lattice generated by L [11], which can be
solved by well-known Minkowski-reduction algorithms [12],
as well as Lagrange-Gauss reduction (LGR) in the special case
of Nt = 2 [13]. Another widely known algorithm is the so-
called LLL (Lenstra-Lenstra-Lovasz) algorithm [6] which can
find a reasonably close to optimal solution in polynomial time.

V. SIMULATION RESULTS

We now evaluate the performance of the proposed receiver
architecture in the uncoded case where the transmitted symbols
belong to the finite constellation 2-PAM (corresponding to a
4-OQAM complex modulation in FBMC).

In figure 1, we have compared the bit error rate perfor-
mance of the LGR-based algorithm over an Nt = Nr = 2
MIMO Rayleigh fading channel. We have assumed perfect
channel state information and that the channels follow the
ITU Pedestrian-A [14] channel model. For comparison, we
have also plotted the performance of the ZF and MMSE
detectors for OFDM. It is known from [4] that each of ZF
and MMSE achieves the same performance for both OFDM
and FBMC schemes. We have also shown the performance
of ML and LGR-based algorithm for OFDM modulation, and
the performance of the so-called MMSE-ML receiver which
is proposed for MIMO-FBMC in [3].

As we can see in the figure, for BER=10−2, the LGR-based
receiver in FBMC achieves a gain of about 2 dB with respect
to the MMSE detector. However, compared to the LGR-
based algorithm for OFDM modulation, when considering
FBMC modulation, the proposed LGR-based receiver does not
achieve the maximum spatial diversity of 2. This is mainly
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Fig. 1. The BER performance of ZF, MMSE, ML and LGR based algorithms
for 2× 2 MIMO-OFDM and MIMO-FBMC modulations

due to the restriction of the search domain of the matrix
A. Interestingly, LGR-based receiver exhibits the same BER
performance as the MMSE-ML. In addition, it is worth noting
that MMSE-ML has a higher complexity since it performs an
exhaustive search in the ML stage [3].
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Fig. 2. The BER performance of ZF, MMSE, ML, LLL and Minkowski based
algorithms for 4× 4 MIMO-OFDM and MIMO-FBMC modulations

In figure 2, we have considered the case of a MIMO-
FBMC transmission over a Rayleigh fading channel with
Nt = Nr = 4 and 4-OQAM complex modulation. We have
compared the performance of the LLL based and Minkowski
based receivers with respect to the one of the MMSE detector.
The LLL based and Minkowski based receivers have almost
the same performance and outperform the MMSE and MMSE-
ML receivers with a gain at BER = 10−3 of about 7 dB
and 5.5 dB, respectively. It can be also noted that LLL and
Minkowski based receivers achieve a diversity of about 2,
while MMSE-ML has only a diversity of one even in a
4 × 4 MIMO system. For comparison, we have also added
the performance of LLL and Minkowski based receivers using

OFDM modulation which achieve the full available diversity
of 4. Therefore, we observe again that LR based receivers
in FBMC can achieve half of the available diversity in SM-
MIMO configuration. This seems to be due to the restriction
to real numbers on the entries of A.

VI. CONCLUSIONS

In this work, we have considered the lattice-reduction-
aided (LRA) MIMO equalization for FBMC/OQAM. We have
shown that the FBMC/OQAM intrinsic interference prevents
the receiver from achieving full diversity that LRA is supposed
to. Indeed, since the interference does not belong to a lattice,
the choice of the transformation matrix should be restricted
to the set of “real” integer matrices in order to maintain
the interference and the data symbols separate. Clearly, this
restriction sacrifices part of the degrees of freedom and limits
the achieved spatial diversity. Simulation results show that the
proposed receiver offers a significant performance improve-
ment compared to the MMSE receiver. This performance gain
becomes more pronounced as the size of the MIMO system
increases.
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