H. Abdi and L. Williams, Partial least squares methods: partial least squares correlation and partial least square regression, Methods in molecular biology: computational toxicology, pp.549-579, 2012.

H. Bock, The equivalence of two extremal problems and its application to the iterative classification of multivariate data, Vortragsausarbeitung, Tagung. Mathematisches Forschungsinstitut Oberwolfach Bougeard S, Cardinal M, vol.32, pp.56-64, 1969.

S. Bougeard, M. Hanafi, and E. Qannari, ACPVI multibloc. Application à des données d'épidémiologie animale, Journal de la Société Française de Statistique, vol.148, pp.77-94, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00386614

S. Bougeard, E. Qannari, C. Lupo, and M. Hanafi, From multiblock partial least squares to multiblock redundancy analysis, A continuum approach. Informatica, vol.22, pp.11-26, 2011.

S. Bougeard, E. Qannari, and N. Rose, Multiblock redundancy analysis: interpretation tools and application in epidemiology, J Chemom, vol.25, pp.467-475, 2011.

X. Bry, T. Verron, P. Redont, and P. Cazes, THEME-SEER: a multidimensional exploratory technique to analyze a structural model using an extended covariance criterion, J Chemom, vol.26, pp.158-169, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00806293

C. Charles, Régression typologique et reconnaissance des formes, 1977.

K. De-roover, C. Ceulemans, and M. Timmerman, Clusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock data, Psychol Methods, vol.17, pp.100-119, 2012.

W. Desarbo and W. Cron, A maximum likelihood methodology for clusterwise linear regression, J Classif, vol.5, pp.249-282, 1988.

E. Diday, Classification et sélection de paramètres sous contraintes, pp.IRIA-LABORIA, 1976.

P. Dolce, E. Vinzi, V. Lauro, C. Abdi, H. et al., Trinchera L (eds) The multiple facets of partial least squares and related methods, Springer proceedings in mathematics & statistics, pp.59-59, 2016.

C. Hahn, M. Johnson, and A. Hermann, Capturing customer heterogeneity using finite mixture PLS approach, Schmalenbach Bus Rev, vol.54, pp.243-269, 2002.

H. Hubert and P. Arabie, Comparing partitions, J Classif, vol.2, pp.193-218, 1985.

H. Hwang and Y. Takane, Generalized structured component analysis, Psychometrika, vol.69, pp.81-99, 2004.

H. Hwang, S. Desarbo, and Y. Takane, Fuzzy clusterwise generalized structured component analysis, Psychometrika, vol.72, pp.181-198, 2007.

G. Kissita, Les analyses canoniques généralisées avec tableau de référence généralisé : éléments théoriques et appliqués, 2003.

J. Lohmoller, H. Physica-verlag, F. Martella, D. Vicari, and M. Vichi, Latent variables path modeling with partial least squares, Stat Comput, vol.25, pp.261-272, 1989.

C. Preda and G. Saporta, Clusterwise PLS regression on a stochastic process, Comput Stat Data Anal, vol.49, pp.99-108, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01124745

S. Qin, S. Valle, and M. Piovoso, On unifying multiblock analysis with application to decentralized process monitoring, J Chemom, vol.15, pp.715-742, 2001.

M. Sarstedt, A review of recent approaches for capturing heterogeneity in partial least squares path modelling, J Model Manage, vol.3, pp.140-161, 2008.

R. Schlittgen, C. Ringle, M. Sarstedt, and J. M. Becker, Segmentation of PLS path models by iterative reweighted regressions, J Bus Res, vol.69, pp.4583-4592, 2016.

Q. Shao and Y. Wu, Consistent procedure for determining the number of clusters in regression clustering, J Stat Plan Inference, vol.135, pp.461-476, 2005.

H. Spath, Clusterwise linear regression, Computing, vol.22, pp.367-373, 1979.

R. Team, R: a language and environment of statistical computing, Psychometrika, vol.76, pp.257-284, 2011.

M. Tenenhaus, La régression PLS, 1998.

L. Trinchera, Unobserved heterogeneity in structural equation models: a new approach to latent class detection in PLS path modeling, 2007.

D. Vicari and M. Vichi, Multivariate linear regression for heterogeneous data, J Appl Stat, vol.40, pp.1209-1230, 2013.

V. Vinzi, C. Lauro, and S. Amato, PLS typological regression, New developments in classification and data analysis, pp.133-140, 2005.

V. Vinzi, C. Ringle, S. Squillacciotti, and L. Trinchera, Capturing and treating unobserved heterogeneity by response based segmentation in PLS path modeling. a comparison of alternative methods by computational experiments, ESSEC Business School, 2007.

V. Vinzi, L. Trinchera, S. Squillacciotti, and M. Tenenhaus, REBUS-PLS: a response-based procedure for detecting unit segments in pls path modeling, Appl Stochastic Models Bus Ind, vol.24, pp.439-458, 2009.

M. Vivien, Approches PLS linéaires et non-linéaires pour la modélisation de multi-tableaux : théorie et applications, vol.1, 2002.

J. Westerhuis and P. Coenegracht, Multivariate modelling of the pharmaceutical two-step process of wet granulation and tableting with multiblock partial least squares, J Chemom, vol.11, pp.379-392, 1997.

J. Westerhuis and A. Smilde, Deflation in multiblock PLS, J Chemom, vol.15, pp.485-493, 2001.

J. Westerhuis, T. Kourti, and J. Macgregor, Analysis of multiblock and hierarchical PCA and PLS model, J Chemom, vol.12, pp.301-321, 1998.

H. Wold, Encyclopedia of statistical sciences, Partial least squares, pp.581-591, 1985.

S. Wold, The multivariate calibration problem in chemistry solved by the PLS method, Matrix Pencils pp, pp.286-293, 1983.