, Faut-il opposer les deux approches apprentissage et modélisation, ou au contraire voir leurs complémentarités comme le suggère Hal Varian aux économistes (Varian, Les chapitres suivants illustreront le deuxième, 2014.

M. Aizerman, E. Braverman, and L. Rozonoer, Method of potential functions in the problem of restoration of a functional converter characteristic by means of points observed randomly, Avtomatika i Telemekhanika, issue.12, p.25, 1961.

D. M. Allen, The relationship between variable selection and data augmentation and a method for prediction, Technometrics, vol.16, issue.1, pp.125-127, 1974.

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, issue.3, pp.337-404, 1950.

A. Berlinet and C. Thomas-agnan, Reproducing kernel Hilbert spaces in probability and statistics, 2011.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, pp.144-152, 1992.

L. Y. Bottou, , 1991.

, Une approche théorique de l'apprentissage connexionniste

, applications à la reconnaissance de la parole

L. Breiman, Statistical modeling : The two cultures (with comments and a rejoinder by the author), Statistical Science, vol.16, issue.3, pp.199-231, 2001.

A. Y. Chervonenkis, Early history of support vector machines, Empirical Inference, pp.13-20, 2013.

F. Conway, J. Siegelman, and G. L. Et-alexanderson, Dark hero of the information age : In search of Norbert Wiener, the father of cybernetics, 2005.

F. Conway, J. Siegelman, N. Vallée, and R. Vallée, , 2012.

, Héros pathétique de l'âge de l'information : en quête de Norbert Wiener, père de la cybernétique

B. J. Copeland and D. Proudfoot, On alan turing's anticipation of connectionism, Synthese, vol.108, issue.3, pp.361-377, 1996.

A. Cornuéjols and L. Miclet, , 2002.

A. Artificiel, Concepts et Méthodes. Eyrolles

T. Cover, Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE transactions on electronic computers, pp.326-334, 1965.

J. S. Cramer, , 2003.

, Logit models from economics and other fields

J. S. Cramer, The origins and development of the logit model, 2003.

G. Cybenko, , 1989.

, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems, vol.2, issue.4, pp.303-314

D. Donoho, 50 years of data science, Tukey Centennial Workshop, 2015.

R. Duda and P. Hart, Pattern classification and scene analysis, 1973.

R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of eugenics, vol.7, issue.2, pp.179-188, 1936.

F. Fogelman-soulie, Y. Robert, and M. Tchuente, , 1987.

, Automata networks in computer science : theory and applications

C. Franklin and A. Agresti, Statistics : The art and science of learning from data, 2013.

A. Gammerman and V. Vovk, , 2015.

, Alexey chervonenkis's bibliography : Introductory comments, Journal of Machine Learning Research, vol.16, pp.2051-2066

I. Guyon, Data mining history : The invention of support vector machines, 2016.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning : data mining, inference, and prediction, 2009.

P. Horst, P. C. Wallin, L. C. Guttman, F. B. Wallin, J. A. Clausen et al., The prediction of personal adjustment : A survey of logical problems and research techniques, with illustrative application to problems of vocational selection, school success, marriage, and crime, 1941.

T. Kohonen, , 1989.

W. Krauth and M. Mézard, Learning algorithms with optimal stability in neural networks, Journal of Physics A : Mathematical and General, vol.20, issue.11, p.745, 1987.

P. A. Lachenbruch and M. R. Mickey, Estimation of error rates in discriminant analysis, Technometrics, vol.10, issue.1, pp.1-11, 1968.

Z. Luo, B. Schölkopf, and V. Vovk, Empirical Inference : Festschrift in Honor of Vladimir N. Vapnik, 2013.

O. L. Mangasarian, Linear and nonlinear separation of patterns by linear programming, Operations research, vol.13, issue.3, pp.444-452, 1965.

W. S. Mcculloch, Recollections of the many sources of cybernetics, ASC Forum, vol.6, issue.2, pp.5-16, 1974.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, vol.5, issue.4, pp.115-133, 1943.

D. Mcfadden, Conditional logit analysis of qualitative choice behavior, Econometrics, pp.105-142, 1973.

M. Minsky and S. Papert, Perceptrons : an Introduction to Computational Geometry, 1969.

V. N. Novoseltsev, Institute of control sciences through the lens of vc dimension, pp.43-53, 2015.

R. Olshen, A conversation with leo breiman, Statistical Science, pp.184-198, 2001.

J. Platt, , 1999.

, Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods, Advances in large margin classifiers, vol.10, issue.3, pp.61-74

F. Rosenblatt, Principles of Neurodynamics : Perceptrons and the Theory of Brain Mechanisms, 1962.

G. Saporta, Models for understanding versus models for prediction, pp.315-322, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01125563

G. Shmueli, To explain or to predict ? Statistical science, pp.289-310, 2010.

F. W. Smith, Pattern classifier design by linear programming, IEEE Transactions on Computers, vol.100, issue.4, pp.367-372, 1968.

M. Stone, , 1974.

, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society. Series B (Methodological, pp.111-147

H. Theil, , 1969.

, A multinomial extension of the linear logit model, International Economic Review, vol.10, issue.3, pp.251-59

M. Turk and A. Pentland, Eigenfaces for recognition, Journal of cognitive neuroscience, vol.3, issue.1, pp.71-86, 1991.

V. Vapnik, Pattern recognition using generalized portrait method. Automation and remote control, vol.24, pp.774-780, 1963.

V. Vapnik, The nature of statistical learning theory, 1995.

V. Vapnik, , 1998.

V. Vapnik, Estimation of dependences based on empirical data, 2006.

V. N. Vapnik and A. Y. Et-chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Soviet Math. Dokl, vol.9, pp.915-918, 1968.

V. N. Vapnik and S. Kotz, Estimation of dependences based on empirical data, 1982.

V. Vapnik and A. Y. Chervonenkis, , 1974.

O. Teoriya-raspoznavaniya, Statisticheskie problemy obucheniya (Theory of pattern recognition. Statistical problems of learning)

H. R. Varian, Big data : New tricks for econometrics, The Journal of Economic Perspectives, vol.28, issue.2, pp.3-27, 2014.

P. F. Verhulst, , 1845.

, Recherches mathématiques sur la loi d'accroissement de la population, Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, vol.18, pp.14-54

V. Neumann and J. , First draft of a report on the edva. between the united states army ordinance department and the university of pennsylvania moore school of electrical engineering university of pennsylvania, 1945.

V. Vovk, H. Papadopoulos, and A. Gammerman, Measures of Complexity, 2015.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, Phoneme recognition using time-delay neural networks, IEEE transactions on acoustics, speech, and signal processing, vol.37, issue.3, pp.328-339, 1989.

N. Wiener, Cybernetics : Control and communication in the animal and the machine, 1948.