, through generous contributions from the following: AbbVie, Alzheimer's Association

, Alzheimer's Drug Discovery Foundation, Araclon Biotech

. Bristol-myers-squibb and . Company,

I. Cerespir and . Cogstate,

, Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company

F. Homann-la-roche-ltd, I. Genentech, ;. Fujirebio, ;. Ge-healthcare, and . Ixico-ltd, Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC

&. Merck, . Co, and . Inc, Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies, Novartis Pharmaceuticals Corporation

, Pzer Inc.; Piramal Imaging; Servier

, The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's, Takeda Pharmaceutical Company; and Transition Therapeutics

H. Abdi, Partial least squares regression and projection on latent structure regression (PLS Regression), Wiley Interdisciplinary Reviews: Computational Statistics, vol.2, issue.1, p.97106, 2010.

H. Abdi and M. Béra, Correspondence analysis', Encyclopedia of social network analysis and mining pp, p.275284, 2014.

H. Abdi, V. Guillemot, A. Eslami, and D. Beaton, Canonical correlation analysis, 2017.

G. I. Allen, L. Grosenick, and J. Taylor, A Generalized Least-Square Matrix Decomposition, Journal of the American Statistical Association, vol.109, issue.505, p.145159, 2014.

M. Bécue-bertaut and J. Pagès, Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data, Computational Statistics & Data Analysis, vol.52, issue.6, p.32553268, 2008.

D. Beaton, J. Dunlop, and H. Abdi, Partial Least Squares Correspondence Analysis: A Framework to Simultaneously Analyze Behavioral and Genetic Data, Psychological Methods, vol.21, issue.4, p.621651, 2016.

D. Beaton, K. M. Sunderland, B. Levine, J. Mandzia, M. Masellis et al., Generalization of the minimum covariance determinant algorithm for categorical and mixed data types, C. & others, p.333005, 2018.

A. M. Bennet, C. A. Reynolds, M. Gatz, K. Blennow, N. L. Pedersen et al., Pleiotropy in the presence of allelic heterogeneity: alternative genetic models for the inuence of APOE on serum LDL, CSF amyloid-?42, and dementia, Journal of Alzheimer's disease: JAD, vol.22, issue.1, p.129134, 2010.

J. P. Benzécri, L'analyse des données: L'analyse des correspondances, 1973.

K. J. Berry, J. E. Johnston, and P. W. Mielke, Permutation methods, Computational Statistics, vol.3, p.527542, 2011.

M. Borga, T. Landelius, and H. Knutsson, A Unied Approach to PCA, PLS, MLR and CCA, 1992.

P. C. Bürkner and M. Vuorre, Ordinal Regression Models in Psychology: A Tutorial

M. Chernick, Bootstrap methods: A guide for practitioners and researchers, vol.619, 2008.

C. Cruchaga, S. Chakraverty, K. Mayo, F. L. Vallania, R. D. Mitra et al., Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families, Goate, A. M. & for the NIA-LOAD/NCRAD Family Study Consortium, vol.7, p.31039, 2012.

L. D'ambra and N. C. Lauro, Non symmetrical exploratory data analysis, Statistica Applicata, vol.4, issue.4, p.511529, 1992.

P. L. De-micheaux, B. Liquet, and M. Sutton, Pls for big data: A unied parallel algorithm for regularised group pls, Statistics Surveys, vol.13, p.119149, 2019.

R. S. Desikan, A. J. Schork, Y. Wang, A. Witoelar, M. Sharma et al.,

M. Martinez, S. H. Choi, A. Destefano, M. A. Ikram, J. C. Bis et al., Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus, 2015.

S. Duchesne, I. Chouinard, O. Potvin, V. S. Fonov, A. Khademi et al., The Canadian Dementia Imaging Protocol: Harmonizing National Cohorts, Journal of Magnetic Resonance Imaging, vol.49, issue.2, p.456465, 2019.

B. Efron, 126. ArticleType: primary_article / Full publication date: Jan., 1979 / Copyright © 1979 Institute of Mathematical Statistics, vol.7, 1979.

B. Escoer, Analyse factorielle et distances répondant au principe d'équivalence distributionnelle, vol.26, p.2937, 1978.

B. Escoer, Traitement simultané de variables qualitatives et quantitatives en analyse factorielle', Cahiers de l'Analyse des Données, vol.4, p.137146, 1979.

B. Escoer, Analyse de la diérence entre deux mesures dénies sur le produit de deux mêmes ensembles, vol.8, p.325329, 1983.

B. Escoer, Analyse factorielle en reférence à un modéle. Application à lanalyse de tableaux dechanges, Revue de Statistique Appliquée, vol.32, issue.4, p.2536, 1984.

B. Escoer-cordier, L'Analyse des Correspondences, 1965.

S. M. Farhan, R. Bartha, S. E. Black, D. Corbett, E. Finger et al., The Ontario Neurodegenerative Disease Research Initiative (ONDRI), p.17, 2016.

E. Genin, D. Hannequin, D. Wallon, K. Sleegers, M. Hiltunen et al.,

D. &-campion, APOE and Alzheimer disease: a major gene with semi-dominant inheritance, Molecular psychiatry, vol.16, issue.9, p.903907, 2011.

M. Greenacre, Power transformations in correspondence analysis, Computational Statistics & Data Analysis, vol.53, issue.8, p.31073116, 2009.

M. Greenacre, Data Doubling and Fuzzy Coding, Visualization and Verbalization of Data, pp.239-253, 2014.

M. J. Greenacre, Theory and Applications of Correspondence Analysis, 1984.

M. J. Greenacre, Biplots in correspondence analysis, Journal of Applied Statistics, vol.20, issue.2, p.251269, 1993.

M. J. Greenacre, Correspondence analysis, Wiley Interdisciplinary Reviews: Computational Statistics, vol.2, issue.5, p.613619, 2010.
URL : https://hal.archives-ouvertes.fr/halshs-00337758

V. Guillemot, D. Beaton, A. Gloaguen, T. Löfstedt, B. Levine et al., A constrained singular value decomposition method that integrates sparsity and orthogonality, PloS one, vol.14, issue.3, p.211463, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02078111

S. Holmes, Multivariate data analysis: The French way, p.219233, 2008.

Y. A. Huang, B. Zhou, M. Wernig, and T. C. Südhof, ApoE2, ApoE3, and ApoE4 Dierentially Stimulate APP Transcription and A? Secretion, 2017.

U. G. Indahl, K. H. Liland, and T. Naes, Canonical partial least squaresa unied pls approach to classication and regression problems, Journal of Chemometrics: A Journal of the Chemometrics Society, vol.23, issue.9, p.495504, 2009.

T. Jonsson, J. K. Atwal, S. Steinberg, J. Snaedal, P. V. Jonsson et al., , 2012.

, Alzheimer's disease and age-related cognitive decline, Nature, vol.488, issue.7409, p.9699

R. D. Ketterlinus, F. L. Bookstein, P. D. Sampson, and M. E. Lamb, Partial least squares analysis in developmental psychopathology, Development and Psychopathology, vol.1, issue.4, p.351371, 1989.

N. Kovacevic, H. Abdi, D. Beaton, and A. R. Mcintosh, Revisiting pls resampling: comparing signicance versus reliability across range of simulations, New Perspectives in Partial Least Squares and, p.159170, 2013.

A. Krishnan, L. J. Williams, A. R. Mcintosh, and H. Abdi, Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review, vol.56, p.475, 2011.

, Multivariate Decoding and Brain Reading

P. M. Kroonenberg and R. Lombardo, Nonsymmetric correspondence analysis: A tool for analysing contingency tableswith a dependence structure, Multivariate Behavioral Research, vol.34, issue.3, p.367396, 1999.

O. M. Kvalheim, B. Grung, and T. Rajalahti, Number of components and prediction error in partial least squares regression determined by Monte Carlo resampling strategies, 2019.

L. Floch, D. Guillemot, V. Frouin, V. Pinel, P. Lalanne et al.,

. Duchesnay, Signicant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares, NeuroImage, vol.63, issue.1, p.1124, 2012.

L. Lebart, A. Morineau, and K. M. Warwick, Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices, 1984.

G. Lettre, C. Lange, and J. N. Hirschhorn, Genetic model testing and statistical power in population-based association studies of quantitative traits', Genetic Epidemiology: The Ocial Publication of the, International Genetic Epidemiology Society, vol.31, issue.4, p.358362, 2007.

C. Linnertz, L. Anderson, W. Gottschalk, D. Crenshaw, M. W. Lutz et al., The cis-regulatory eect of an Alzheimer's disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes, Alzheimer's & Dementia, vol.10, issue.5, p.551, 2014.

A. Mcintosh, F. Bookstein, J. Haxby, and C. Grady, Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares, NeuroImage, vol.3, issue.3, p.143157, 1996.

A. R. Mcintosh and N. J. Lobaugh, Partial least squares analysis of neuroimaging data: applications and advances, Neuroimage, vol.23, pp.250-263, 2004.

M. Montero-odasso, F. Pieruccini-faria, R. Bartha, S. E. Black, E. Finger et al., Motor Phenotype in Neurodegenerative Disorders: Gait and Balance Platform Study Design Protocol for the Ontario Neurodegenerative Research Initiative (ONDRI), ONDRI Investigators & McIlroy, vol.59, p.707721, 2017.

J. C. Morris, The Clinical Dementia Rating (CDR): current version and scoring rules, 1993.

A. J. Myers, M. Kaleem, L. Marlowe, A. M. Pittman, A. J. Lees et al., The H1c haplotype at the MAPT locus is associated with Alzheimer's disease, Human Molecular Genetics, vol.14, issue.16, p.23992404, 2005.

Z. S. Nasreddine, N. A. Phillips, V. Bédirian, S. Charbonneau, V. Whitehead et al., The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment, Journal of the American Geriatrics Society, vol.53, issue.4, p.366371, 2005.

M. Pérez-enciso and M. Tenenhaus, Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach', Human Genetics, vol.112, issue.5, p.581592, 2003.

S. Purcell, B. Neale, K. Todd-brown, L. Thomas, M. A. Ferreira et al., Plink: a tool set for wholegenome association and population-based linkage analyses, The American journal of human genetics, vol.81, issue.3, p.559575, 2007.

C. R. Rao, A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance', Qüestiió: quaderns d'estadística i investigació operativa, vol.19, 1995.

R. Rodríguez-pérez, L. Fernández, and S. Marco, Overoptimism in cross-validation when using partial least squares-discriminant analysis for omics data: a systematic study, Analytical and Bioanalytical Chemistry, vol.410, issue.23, p.59815992, 2018.

A. D. Roses, M. W. Lutz, H. Amrine-madsen, A. M. Saunders, D. G. Crenshaw et al., A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer's disease, The Pharmacogenomics Journal, vol.10, issue.5, p.375384, 2010.

J. Skinner, J. O. Carvalho, G. G. Potter, A. Thames, E. Zelinski et al., The Alzheimer's Disease Assessment Scale-Cognitive-Plus (ADAS-Cog-Plus): an expansion of the ADAS-Cog to improve responsiveness in MCI, Brain imaging and behavior, vol.6, issue.4, 2012.

, Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework, Neu-roImage, vol.15, issue.4, p.747771

S. Strother, S. La-conte, L. K. Hansen, J. Anderson, J. Zhang et al., Optimizing the fmri data-processing pipeline using prediction and reproducibility performance metrics: I. a preliminary group analysis, Neuroimage, vol.23, pp.196-207, 2004.

M. Sutton, R. Thiébaut, and B. Liquet, Sparse partial least squares with group and subgroup structure', Statistics in Medicine, vol.37, issue.23, p.33383356, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02134605

Y. Takane, Relationships among Various Kinds of Eigenvalue and Singular Value Decompositions, New Developments in Psychometrics, p.4556, 2003.

Y. Takane and H. Hwang, Regularized multiple correspondence analysis, p.259279, 2006.

Y. Takane and S. Jung, Regularized nonsymmetric correspondence analysis, Computational Statistics & Data Analysis, vol.53, issue.8, p.31593170, 2009.

Y. Takane, H. Yanai, and S. Mayekawa, Relationships among several methods of linearly constrained correspondence analysis, Psychometrika, vol.56, issue.4, p.667684, 1991.

A. Tenenhaus, C. Philippe, V. Guillemot, K. L. Cao, J. Grill et al., Variable selection for generalized canonical correlation analysis, p.1, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071432

A. Tenenhaus and M. Tenenhaus, Regularized Generalized Canonical Correlation Analysis, Psychometrika, vol.76, issue.2, p.257284, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00554101

M. Tenenhaus, La régression PLS: théorie et pratique, Editions TECHNIP. Google-Books-ID: OesjK2KZhsAC, 1998.

D. Trabzuni, S. Wray, J. Vandrovcova, A. Ramasamy, R. Walker et al., MAPT expression and splicing is dierentially regulated by brain region: relation to genotype and implication for tauopathies, Human Molecular Genetics, vol.21, issue.18, p.40944103, 2012.

L. R. Tucker, An inter-battery method of factor analysis, Psychometrika, vol.23, issue.2, p.111136, 1958.

S. V. Vormfelde and J. Brockmöller, On the value of haplotype-based genotypephenotype analysis and on data transformation in pharmacogenetics and -genomics', Nature Reviews Genetics, vol.8, issue.12, 2007.

J. A. Wegelin, A survey of partial least squares (pls) methods, with emphasis on the two-block case, 2000.

H. Wold, Soft modelling by latent variables: the non-linear iterative partial least squares (NIPALS) approach', Perspectives in Probability and Statistics, p.117144, 1975.

S. Wold, K. Esbensen, and P. Geladi, Principal component analysis, Chemometrics and Intelligent Laboratory Systems, vol.2, issue.1, p.3752, 1987.