A New Micro-Batch Approach for Partial Least Square Clusterwise Regression - Archive ouverte HAL Access content directly
Journal Articles Procedia Computer Science Year : 2018

A New Micro-Batch Approach for Partial Least Square Clusterwise Regression

(1, 2) , (1) , (3) , (1) , (4)
1
2
3
4

Abstract

Current implementations of Clusterwise methods for regression when applied to massive data either have prohibitive computational costs or produce models that are difficult to interpret. We introduce a new implementation Micro-Batch Clusterwise Partial Least Squares (mb-CW-PLS), which is consists of two main improvements: (a) a scalable and distributed computational framework and (b) a micro-batch Clusterwise regression using buckets (micro-clusters). With these improvements, we are able to produce interpretable regression models with multicollinearity within a reasonable time frame.

Keywords

Fichier principal
Vignette du fichier
1-s2.0-S1877050918322348-main.pdf (588.3 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02471601 , version 1 (09-02-2020)

Licence

Attribution - NonCommercial - NoDerivatives - CC BY 4.0

Identifiers

Cite

Gaël Beck, Hanane Azzag, Stéphanie Bougeard, Mustapha Lebbah, Ndèye Niang. A New Micro-Batch Approach for Partial Least Square Clusterwise Regression. Procedia Computer Science, 2018, 144, pp.239-250. ⟨10.1016/j.procs.2018.10.525⟩. ⟨hal-02471601⟩
88 View
259 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More