D. Balouek, A. Carpen-amarie, G. Charrier, F. Desprez, E. Jeannot et al., Adding virtualization capabilities to the Grid'5000 testbed, Niang Ndèye / Procedia Computer Science, vol.00, pp.0-000, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00946971

M. Van-sinderen and F. Leymann, Cloud Computing and Services Science, Communications in Computer and Information Science, vol.367, pp.3-20

H. Bock, The equivalence of two extremal problems and its application to the iterative classification of multivariate data, Mathematisches Forschungsinstitut, 1969.

S. Bougeard, H. Abdi, G. Saporta, and N. Niang, Clusterwise analysis for multiblock component methods, Advances in Data Analysis and Classification, pp.1-29, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02470765

C. Charles, Régression typologique et reconnaissance des formes, 1977.

K. De-roover, E. Ceulemans, M. E. Timmerman, K. Vansteelandt, J. Stouten et al., Clusterwise simultaneous component analysis for analyzing structural differences in multivariate multiblock data, Psychological Methods, vol.17, p.100, 2012.

W. S. Desarbo and W. L. Cron, A maximum likelihood methodology for clusterwise linear regression, Journal of classification, vol.5, pp.249-282, 1988.

E. Diday, Classification et sélection de paramètres sous contraintes, 1976.

V. Esposito-vinzi, L. Trinchera, S. Squillacciotti, and M. Tenenhaus, Rebus-pls: A response-based procedure for detecting unit segments in pls path modelling, Applied Stochastic Models in Business and Industry, vol.24, pp.439-458, 2008.

C. Hahn, M. D. Johnson, A. Herrmann, and F. Huber, Capturing customer heterogeneity using a finite mixture pls approach, Schmalenbach Business Review, vol.54, pp.243-269, 2002.

H. Hwang, W. S. Desarbo, and Y. Takane, Fuzzy clusterwise generalized structured component analysis, Psychometrika, vol.72, p.181, 2007.

M. Lichman, UCI machine learning repository, 2013.

J. B. Lohmöller, Latent variable path modeling with partial least squares, 2013.

F. Martella, D. Vicari, and M. Vichi, Partitioning predictors in multivariate regression models, Statistics and Computing, vol.25, pp.261-272, 2015.

D. C. Montgomery, E. A. Peck, and G. G. Vining, , 2001.

C. Preda and G. Saporta, Clusterwise pls regression on a stochastic process, Computational Statistics & Data Analysis, vol.49, pp.99-108, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01124745

M. Sarstedt, A review of recent approaches for capturing heterogeneity in partial least squares path modelling, Journal of Modelling in Management, vol.3, pp.140-161, 2008.

R. Schlittgen, C. M. Ringle, M. Sarstedt, and J. M. Becker, Segmentation of pls path models by iterative reweighted regressions, Journal of Business Research, vol.69, pp.4583-4592, 2016.

H. Späth, Algorithm 39 clusterwise linear regression, Computing, vol.22, pp.367-373, 1979.

V. E. Vinzi, C. N. Lauro, and S. Amato, Pls typological regression: algorithmic, classification and validation issues, New developments in classification and data analysis, pp.133-140, 2005.

C. J. Willmott and K. Matsuura, Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance, Climate research, vol.30, pp.79-82, 2005.

H. Wold, Partial least squares. Encyclopedia of statistical sciences, 1985.