J. A. Anderson, An Introduction to Neural Networks, 1995.

M. Barker and W. Rayens, PLS for discrimination, J. Chemometrics, vol.17, pp.166-173, 2003.

P. Bastien, V. Esposito-vinzi, and M. Tenenhaus, PLS generalised linear regression, Computational Statistics & Data Analysis, vol.48, pp.17-46, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01125098

F. Bertrand, J. Magnanensi, N. Meyer, and M. Maumy-bertrand, Algorithmic insights and applications, vol.Compiled, 2014.

S. Bougeard, M. Hanafi, H. Noçairi, and E. M. Qannari, Multiblock canonical correlation analysis for categorical variables: application to epidemiological data, pp.393-404, 2006.

. Noçairi,

L. Breiman, Machine Learning, vol.24, pp.49-64, 1996.

P. Bühlmann and T. Hothorn, Boosting Algorithms: Regularization, Prediction and Model Fitting, Statistical Science, vol.22, pp.477-505, 2007.

H. Chun and S. Keles, Sparse partial least squares for simultaneous dimension reduction and variable selection, Journal of the Royal Statistical Society, Series B, vol.72, pp.3-25, 2010.

B. Clarke, , 2003.

, Comparing Bayes Model Averaging and Stacking When Model Approximation, Journal of Machine Learning Research, vol.4, pp.683-712

C. Cortes and V. Vapnik, Support-vector network, Machine Learning, vol.20, pp.1-25, 1995.

J. C. Deville and Y. Tillé, Efficient balanced sampling : The cube method, Biometrika, vol.91, issue.4, pp.893-912, 2004.

Y. Freund and R. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, pp.119-139, 1997.

J. H. Friedman, T. Hastie, and R. Tibshirani, Additive Logistic Regression: a Statistical View of Boosting, The Annals of Statistics, vol.28, issue.2, pp.337-407, 2000.

C. Gomes, H. Noçairi, M. Thomas, F. Ibanez, J. Collin et al., Stacking prediction for a binary outcome, Proceedings of Compstat 2012, 20th International Conference on Computational Statistics, pp.271-282, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01126172

C. Gomes, H. Noçairi, M. Thomas, J. Collin, and G. Saporta, A simple and robust scoring technique for binary classification, Artificial Intelligence Research, vol.3, issue.1, pp.52-58, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01126370

D. J. Hand and K. Yu, Idiot's Bayes-not so stupid after all?, International Statistical Review, vol.69, pp.385-398, 2001.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2009.

R. A. Jacobs, Methods for combining experts' probability assessments, Neural computation, vol.7, pp.867-888, 1995.

L. Kaufman and P. J. Rousseeuw, Statistical Data Analysis Based on the L1-norm and Related Methods, pp.405-416, 1987.

H. J. Klimisch, M. Andreae, and U. Tillmann, A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data, Regulatory Toxicology and Pharmacology, vol.25, pp.1-5, 1997.

L. Kuncheva, Combining pattern classifiers, methods and algorithms, 2014.

M. Leblanc and R. Tibshirani, Combining Estimates in Regression and Classification, Journal of the American Statistical Association, vol.91, pp.1641-1650, 1996.

H. Noçairi, E. M. Qannari, E. Vigneau, and B. D. , Discrimination on latent components with respect to patterns. Application to multicollinear data, Computational Statistics & Data Analysis, vol.48, pp.139-147, 2005.

J. R. Quinlan, C4.5: Programs for Machine Learning, 1993.

R. E. Shapire, The strength of weak learnability, Machine Learning, vol.5, pp.197-227, 1990.

H. Späth, Clusterwise linear regression. Computing, vol.22, pp.367-373, 1979.

P. Sesmero, M. Ledezma, and A. Sanchis, Generating ensembles of heterogeneous classifiers using stacked generalization, WIREs Data Mining Knowl. Discov, vol.5, pp.21-34, 2015.

R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser., B, vol.58, pp.267-288, 1996.

K. M. Ting and I. H. Witten, Issues in stacked generalization, J. Artif. Intell. Res, vol.10, pp.271-289, 1999.

S. Wold, H. Martens, and H. Wold, The multivariate calibration problem in chemistry solved by the PLS method, Matrix pencils, pp.286-293, 1983.

D. Wolpert, Stacked Generalization, Neural Networks, vol.5, pp.41-259, 1992.

Z. Zhou, Ensemble Methods: Foundations and Algorithms, 2012.