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1. Introduction 

The linear systems control is today an 
important research and development area in 
control engineering. In the real world, 
however, many processes are characterized by 
a nonlinear dynamic behavior which makes 
impossible to use conventional tools for 
automatic control. The same applies to systems 
for which mathematical models are 
incompletely specified or of a poor quality. 
There is currently no systematic theory to be 
applied to control such processes. To solve this 
problem, one solution is to use a learning 
phase to identify the process model or 
controller. The term "learning" is about 
changing the structure and/or system settings 
in order to improve its future performance, 
based on previous experimental observations 
[1, 4]. Some adaptive controlling methods 
have been developed, to enable the evolution 
of controller depending on the task [3, 9]. The 
structure of the controller being already 
chosen, those methods allow fixing a number 
of parameters of this one. If the general 
principle used by these algorithms is similar to 
learning done by ANN, adaptation is done by a 
simple setting of a small number of 
coefficients of the control loop without storage 
capacity [5]. Systems with learning 
characteristics such as ANN (Artificial Neural 
Networks) can be successfully utilized in 
control problems such as the decision support 
or situation recognition [4, 6, 12, 13]. 

 

 

 

 

 

 

 

 

 

In this case we speak about learning in 
command rather than adaptive control.  

This article consists of three parts. Section I 
reviews a dynamic variation of ANN that one 
of the authors of this paper proposed in a 
previous work [21]. Section II presents the 
basic principles and some methods of 
neurons control technique. Finally, Section 
III presents the tests and the obtained 
experimental results. 

2. Recurrent Neural Networks 

The used neural network is a variant of 
dynamic networks radial basis functions of 
dynamic RNRF: Recurrent Neural Networks 
with Radial Basis Function [19] (Figure 1).  

 

Figure 1. RNRF network [11] 
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The RNRF considers the time as an internal 
parameter of the network [2, 5, 7]. This 
dynamical aspect is obtained by a recurrence 
of connections between neurons of the input 
layer. These self connections provide the input 
neurons a capacity for taking into account of 
past input data. The neural network is 
equipped with two types of memories: a 
dynamic memory, for taking into account the 
dynamic data input and a static memory to 
store prototypes. The output layer represents 
the layer of Gaussian weighting [13].  

Each neuron from the input layer performs an 
addition at time t of its input ( )iI t and at the 

output of the preceding time ( 1)ix t   

weighted by the coefficient of self connection 

iiw [17]. The neuron outputs the result of the 

activation function: 
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where ( )ia t  and ( )ix t  represent the activation 
of neuron i and its output at time t 
respectively, iiw  is the weight of self-
connection of neuron i, f  is the activation 
function with the expression of the sigmoid: 

1 exp( )
( )

1 exp( )

kx
f x

kx

 


 
 (2) 

The layer of Gaussian neurons [21] provides 
a representation of the Euclidean space. The 
answer ( )j x  is given according to the kernel 

jμ  and the standard deviation j : 
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the network output is given by the following 
linear expression: 

( ).S  x W  (4) 

The learning process of RNFR involves two 
steps. The first is to define the number and 
the parameters of Gaussian functions. The 
method of k-means coupled with the method 
Min-Max is used [16], [20]. The second step 
is to calculate the weights of the connections 
of the output layer W by matrix inversion. 

3. Neural Control 

The data generally available for the realization 
of a learning control system are the couples 
combining the output (or state) ( )y t  with the 

desired process output (or state) * ( )y t [18]. We 

can measure the error y  (the difference 
between the desired output value and the 
measured value) obtained at the output of the 
system after applying the command.  

Contrary, the error u  of the controller output 
which is the difference between the ideal 
command, which is not known, and the 
command ˆ( )u t  recommended by the 
controller, can not be directly obtained. Yet, 
this mistake is necessary to achieve the 
adjustment of controller by a method of 
supervised classical learning (the back-
propagation gradient). 

3.1 Replication of an existing controller 

The first method used to realize a neural 
control system was to replicate the operation 
of an existing controller (Figure 2).  

Although, this approach seems at first sight 
unattractive, since it requires the existence of 
another controller, it can be useful if the 
controller is too complex or too slow to be 
used in real time, or if data is not always 
available. One can take into account the case 
when the control system is reproduced by a 
human operator.  

This method teaches the network to 
reproduce the command ˆ( )u t  recommended 
by the first controller from the desired output 

* ( )y t  or earlier output. One can note that this 
approach requires the appliance of all modes 
of operation of the controlled system, during 
the learning phase. Therefore, it is necessary 
to have a good prior knowledge of the 
operating conditions of the controller. 

3.2 Improving a system of linear control 

This approach consists of using together a 
classical linear controller and a neural 
controller (see Figure 2 and 3). The main idea 
is to achieve an amount of orders from both 
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controllers, gradually increasing the 
importance given to the command ˆ( )u t  
recommended by the ANN, as an extent of 
the learning network [10]. 

 

Figure 2. Schematic learning of the neural 
network [11,17]. 

 

Figure 3. Improved performance of the neural 
control by a proportional gain [10, 17] 

3.3 Direct use of the error output of 
the process 

A simple approach is to try directly to use the 
measured error at the output of the process as 
to adapt the controller (Figure 4). Several 
strategies are possible. The first is to use this 
error as the error at the output of the 
controller. This approach can work only if 
these errors are highly correlated, which is 
rarely the case. The most widely used method 
is to consider the process as an additional 
layer of the network through which the error 
feeds back [15], [22]. 

 

Figure 4. Learning neural network based on error 
Release System 

 

Figure 5. Learning the inverse model 

3.4 Identification of the inverse model 

This approach requires two separate phases 
for learning and for using the network (Fig. 
5). During learning, the network and the 
process are placed in parallel. A sample 
command ( )u t  is given to the process. It will 
use the output ( )y t  of the network as an input 
of the network to find the output 
command ˆ( )u t . The network learns an inverse 
model of the process, a function giving the 
command ˆ( )u t  from the current output of the 
process ( )y t , eventually the last output 

( 1)y t  . After this learning phase the network 
is theoretically capable of providing the 
command u(t) required to obtain an 
output * ( )y t  which is given as input. This is 
placed directly in series with the controlled 
system. Figure 5 summarizes these two 
phases. During the learning phase, the 
process passes through all its possible states, 
or at least, all the states that will be used 
during the checkout. While in many cases, a 
simple sampling of the control space is enough 
in this phase it may be necessary to use 
another control system to guide the process. 

4. Application 

4.1 Description 

We applied the RNRF network on control of 
a first order command system (10 /(10 )s ) 
whose behavior is in open loop. The 
simulations were performed in MATLAB. 

4.2 Learning phase 

We have learned the behavior of an ANN 
from a Proportional Integral (PI) controller 
whose configuration has not been optimized 
(Figure 2) in order to test the behavior of 
ANN on an incomplete knowledge of a 
system. For the learning phase of the ANN, 
control sequence between [0, 1] is defined. 
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Figure 6 shows the signals consY  and sorY  
which respectively represent the input and the 
output in closed-loop system served by the PI 
controller. These two signals are the inputs 
for the ANN. Figure 7 shows the output of PI 
controller ( comU ) which is also the desired 
output of the ANN. 
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Figure 6. Sequence of the reference signal with the 
output of the closed loop system used for learning. 

4.3 Testing  procedure of the ANN 

After the learning phase, the neural network 
was tested on the same system with several 
different types of signals. We compared the 
performance of three types of controllers: the 
Proportional Integrator (PI), the neural 
controller (Figure 8) and the neural controller 
coupled to a proportional one (Figure 3). 
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Figure 7. Control signal corresponding to the 
command sequence for learning 

4.4 Results 

Test with the same data as in the learning 
phase: 

The first test of the ANN is to see its behavior 
in control loop (Figure 8) with the same control 
sequence used in the learning process. Figure 9 
shows the output of the system controlled by 
the neural network. One notes that, apart from 
the peak of the first step, the neural controller 

behaves better than the PI controller (Figure 6). 
The overtaking is nonexistent. 

 

Figure 8. Neural control scheme 
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Figure 9. Testing neurons on the same        
learning sequence 

Test with a step standard signal: 

The second test is meant to evaluate the 
behavior of the neural controller to some step 
signals different from those used in the 
learning phase (the variation of the signal 
amplitude during the learning phase being 
equal to 0.1).  

Figure 10 and Figure 11 show the comparison 
of the three controllers’ behaviors: PI, Neural 
Network (ANN) and neural network coupled 
to the proportional controller. Both tests 
show that the neural controller gives better 
performances than the PI controller. These 
performances are even better thanks to the 
coupling of neural controller with the 
proportional controller. 
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Figure 10. Testing the neural network on a step of 1 
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Figure 11. Testing the neural network                
on a step of 0.5 

Test on a sinusoidal signal 

The third test of three controllers for 
sinusoidal signals. Figure 12 and Figure 13 
show these results on two sinusoids with 
different frequencies. As in the previous case, 
the neural controller gives better performance 
than the PI controller.  

The coupling of the neural network with the 
proportional controller gives a better 
approximation of the input. 
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Figure 12. Testing the neural network on a 
sinusoidal signal of 0.08 Hertz. 
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Figure 13. Testing the neural network on a 
sinusoidal signal of 0.3 Hertz. 

5. Conclusions 

An application of the ANN in control of 
linear systems is presented in this paper. A 
type of dynamic neural network with radial 
basis functions (RNRF) was tested on an 
illustrative example. The results show that the 
neural controller behaves better than the 
original controller which was used in the 
learning phase. The future work will be 
developed on testing the proposed neural 
network in other more complex applications, 
such as nonlinear and unstable systems (as 
the inverted pendulum). One can note that the 
results may be successfully used in different 
robotic applications [14] possibly in 
conjunction with frequency-based methods [8].  
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