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Abstract— The aim of this paper is to cope with estimation
issues of discrete-time nonlinear time-varying systems with
input and output. Inspired by [12], a new design technique
of fixed-time observers is proposed. It relies on the use of past
values of the output and the theory of the monotone systems to
construct dead bit observer or fixed-time interval estimator
depending on the absence or the presence of uncertainties.
Finally, simulations are conducted to verify the effectiveness
of the proposed schemes.

I. INTRODUCTION

It is known that state estimation is important in control
theory and applications. Various state estimation methods
are available in the literature [8], [1]. To improve the accu-
racy, many robust methods have been proposed to attenuate
the effect of ubiquitous uncertainties. Kalman filtering and
H∞ observer/filter design are two commonly used robust
estimation techniques. The uncertainties in Kalman filtering
are assumed to be Gaussian noises while the H∞ design
methods assume that the uncertainties are energy-bounded.
Note that both Gaussian noise assumption and energy-
bounded assumption are impractical. A general and practical
assumption is that the uncertainties are unknown but bounded
by known bounds. With this assumption, interval estimation
has attracted much attention in the past decades [7], [14].

In the literature, there are mainly two kinds of interval
estimation methods: one is interval estimation based on geo-
metrical sets and the other uses interval observers. Compared
with the interval estimation methods based on geometrical
sets, the interval observer is easy to implement with high
computation efficiency. The basic idea of interval observer
designs is to construct stable and cooperative error dynamics.
However, it is non-trivial to construct such an error system.
To deal with this difficulty, coordinate transformation-based
interval observer design methods have been proposed to
relax the design conditions [11], [5]. Although the coordinate
transformation-based methods can relax design conditions
and broaden application scope, the interval estimation re-
sults may be very conservative. Different to the coordinate
transformation-based methods, [16] proposes a new interval
observer with more degrees of design freedom and presented
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a robust design. The result proposed in [16] can be optimized
to improve estimation accuracy.

Note that the aforemetioned methods only consider the
stability and robustness of the interval estimation. In some
situations, we are interested in achieving some transient
performance, e.g., guaranteeing the fixed-time convergence
of the estimation error. A fixed-time observer was first
proposed and designed in [6]. Following this pioneering
work, some works have been done on fixed-time observer
design [9], [13], [15]. However, most existing results on
fixed-time observer focus on continuous-time systems. To the
best of our knowledge, only [17], [3], [4] consider fixed-time
observer for discrete-time systems, but they do not design the
interval estimation or do not study the time-varying context.
In this paper, based on formulas incorporating past values
of the input and the output of the studied plant, two goals
can be achieved. In the absence of unknown uncertainties
and after a fixed time, the exact values of the solutions are
obtained. Next when unknown disturbances are present and
are upper and lower bounded by known constant vectors,
after a fixed time, the formulas we exhibit provide upper
and lower bounds for each component of the solutions, as
interval observers do.

The paper is organized as follows. Preliminaries and prob-
lem setup are introduced in Section II. Dead bit estimation
of the solutions in the absence of uncertainties are given
in Section III. Intervals for the solutions in the presence
of uncertainties are designed in Section IV. An example
illustrates the main results in Section V. Concluding remarks
are given in Section VI.

II. PRELIMINARIES AND PROBLEM SETUP

A. Basic notations, definitions and properties

A matrix Q ∈ Rn×n is called Schur stable if the norm of
all its eigenvalues is smaller than one. The identity matrix
of any dimension is denoted by I . The Euclidean norm of
a vector x ∈ Rn is denoted by |x|. Inequalities must be
understood component-wise, i.e., for xa = [xa,1, ..., xa,n]> ∈
Rn and xb = [xb,1, ..., xb,n]> ∈ Rn, xa ≤ xb if and only
if, for all i ∈ {1, ..., n}, xa,i ≤ xb,i. For a square matrix
Q ∈ Rn×n, the determinant of Q is denoted det(Q) and we
define Q+, Q− ∈ Rn×n by Q+ = max (Q, 0) and Q− =
Q+ −Q.

Definition 1: For any undriven response as follows

x(k + 1) = M(k)x(k), k ∈ N, (1)

the discrete-time state transition matrix is a term which
relates the state of (1) at time k to the state at an earlier



time ` ∈ N:

x(k) = ΦM (k, `)x(`), k ≥ `, (2)

where

ΦM (k, `) =

{
M(k − 1)M(k − 2) · · ·M(`), k > ` ≥ 0,
I, k = `.

(3)
Remark 1: When M(k − 1), M(k − 2), · · · , M(`) are

all invertible, then
• ΦM (k, `) is nonsingular and

Φ−1M (k, `) =

 M−1(`)M−1(`+ 1) · · ·M−1(k − 1),
k > ` ≥ 0,

I, k = `.
(4)

Then, one can define ΦM (`, k) when ` < k by

ΦM (`, k) = Φ−1M (k, `). (5)

• For all k, `, m in N, the next well-known property of
the discrete-time state transition matrix can be easily
deduced and will be frequently used throughout the
paper

ΦM (k,m)ΦM (m, `) = ΦM (k, `). (6)
B. Family of studied systems

Consider the following discrete-time nonlinear time-
varying system:{
x(k + 1) = A(k)x(k) + β(k, u(k), y(k)) + d(k)
y(k) = C(k)x(k) + v(k)

k ∈ N.
(7)

where x(k) ∈ Rn is the state, β is a nonlinear function,
A(k) : N→ Rn×n and C(k) : N→ Rq×n, y(k) ∈ Rq is the
output, u(k) ∈ Rp is an input, and d : N → Rn, v : N →
Rq are respectively additive disturbances and measurement
noises.

Goal and Method. In this note, two objectives are si-
multaneously achieved for the discrete-time system (7): (i) a
dead bit of the state when the functions d and v are known
and (ii) a fixed-time interval estimation when the functions
d and v are unknown but bounded by known values. It
is worth highlighting that the design of two bounds (i.e.,
the interval) for the solutions in fixed time can be done
without requesting an appropriate knowledge of the interval
of the initial conditions and a direct or indirect notion of
nonnegative and cooperative system like in many other works
on interval observer designs of discrete-time systems [2],
[10].

The following assumptions are introduced:
Assumption 1: For all k ∈ N, the pair (A(k), C(k)) is

observable and A(k) is invertible. Furthermore, there exists
L(k) : N → Rn×q such that the matrix H(k) = A(k) +
L(k)C(k) is both Schur stable and invertible.

Assumption 2: There are known constant vectors d ∈
Rn, d ∈ Rn and v ∈ Rq , v ∈ Rq such that for all k ∈ N,
the inequalities

d ≤ d(k) ≤ d (8)
v ≤ v(k) ≤ v (9)

are satisfied.
Discussion of the Assumptions:
• The fact that for all k ∈ N, the pair (A(k), C(k))

observable implies that there is a matrix L(k) ∈ Rn×q

such that the matrix

H(k) = A(k) + L(k)C(k) ∈ Rn×n (10)

Schur stable is rather standard in the context of the
design of observers [5].

• Assuming that A(k) is invertible is not restrictive at
all because when (A(k), C(k)) is observable and A(k)
is not invertible, we can always decompose A(k)x +
β(k, u(k), y(k)) in an alternative way so that the new
matrix A(k) is invertible. Similarly, assuming that H(k)
is invertible is reasonable because we can always choose
L(k) so that H(k) is both Schur stable and invertible.

• Assumption 2 is realistic: it is frequently satisfied in
practice. It can be relaxed by allowing the bounds to
depend on time k but for the sake of the simplicity, we
restrict ourselves to the case where they are constant.

III. DEAD BIT ESTIMATION OF THE STATE

The technique proposed in this section allows a dead bit
estimation of the state, but it can be applied only when the
functions d and v are known. Let us state and prove the
following result:

Theorem 1: Let the system (7) satisfy Assumptions 1.
Let L(k) ∈ Rn×q and h ∈ N, h ≥ 1 be such that the matrix
Φ−1H (k, k − h) − Φ−1A (k, k − h) is invertible for all k ∈ N,
where Φ−1H (k, k−h) and Φ−1A (k, k−h) defined in (4) are the
inverses of discrete-time transition matrices ΦH(k, k−h) and
ΦA(k, k−h), respectively. Then, for a given input u(k), any
solution x(k) of the system (7) which exists over N satisfies,
for all k ≥ h,

x(k) = −Eh(k)
k−1∑

`=k−h

ΦA(k − h, `+ 1)β(`, u(`), y(`))

+ Eh(k)

k−1∑
`=k−h

ΦH(k − h, `+ 1)[β(`, u(`), y(`))

− L(`)y(`)]

− Eh(k)

k−1∑
`=k−h

ΦA(k − h, `+ 1)d(`)

+ Eh(k)

k−1∑
`=k−h

ΦH(k − h, `+ 1) (d(`) + L(`)v(`)) ,

(11)

with

Eh(k) =
(
Φ−1H (k, k − h)− Φ−1A (k, k − h)

)−1
. (12)

Proof: The matrices A(k) and H(k) are invertible for
all k ∈ N. It follows that ΦA(k, k − h) and ΦH(k, k − h)
are invertible for all k ∈ N, h ≥ 1 (see Remark 1). From



the definition of the output y and the definition of H(k), we
deduce that the system (7) admits two representations:

x(k + 1) = A(k)x(k) + β(k, u(k), y(k)) + d(k), (13)
x(k + 1) = H(k)x(k) + β(k, u(k), y(k))

− L(k)y(k) + d(k) + L(k)v(k). (14)

By combining all equations of these two systems between
two values m1 ∈ N, m2 ∈ N and m1 ≥ m2, we have

x(m1) = ΦA(m1,m2)x(m2) +

m1−1∑
`=m2

ΦA(m1, `+ 1)×

× [β(`, u(`), y(`)) + d(`)],
(15)

x(m1) = ΦH(m1,m2)x(m2) +

m1−1∑
`=m2

ΦH(m1, `+ 1)×

× [β(`, u(`), y(`))− L(`)y(`) + d(`) + L(`)v(`)].
(16)

Now, consider a value k ≥ h. Then selecting m2 = k − h
and m1 = k, the equalities (15)-(16) give

x(k) = ΦA(k, k − h)x(k − h) +

k−1∑
`=k−h

ΦA(k, `+ 1)×

× [β(`, u(`), y(`)) + d(`)],
(17)

x(k) = ΦH(k, k − h)x(k − h) +

k−1∑
`=k−h

ΦH(k, `+ 1)×

× [β(`, u(`), y(`))− L(`)y(`) + d(`) + L(`)v(`)].
(18)

Bearing in mind the properties (5)-(6) of the state transi-
tion matrices, we obtain immediately:

(Φ−1H (k, k − h)− Φ−1A (k, k − h))x(k)

= −
k−1∑

`=k−h

ΦA(k − h, `+ 1)[β(`, u(`), y(`)) + d(`)]

+

k−1∑
`=k−h

ΦH(k − h, `+ 1)[β(`, u(`), y(`))− L(`)y(`)

+ d(`) + L(`)v(`)]. (19)

Since Φ−1H (k, k − h) − Φ−1A (k, k − h) is assumed to be
invertible, we deduce that (11) is satisfied.

Remark 2: Because the pair (A(k), C(k)) is observable
for all k ∈ N, there are matrices L(k), L(k − 1) . . .,
L(k − h) and h∗ ∈ N such that for all h ∈ N, h ≥ h∗,
|ΦH(h, k − h)||Φ−1A (h, k − h)| < 1. Consequently the fact
that Φ−1H (k, k−h)−Φ−1A (k, k−h) invertible is not restrictive.

The formula (11) may contain many terms because h may
be large and thus many values have to be stored. To overcome
this drawback, we propose an alternative solution which is
based on dynamic extensions.

Theorem 2: Let the system (7) and L(k) satisfy the
Assumption 1, let h be defined as in Theorem 1 and let
u be a given input. Consider the dynamic extensions

x̂(k + 1) = A(k)x̂(k) + β(k, u(k), y(k)) + d(k) (20)

and

x∗(k + 1) = H(k)x∗(k) + β(k, u(k), y(k))

−L(k)y(k) + d(k) + L(k)v(k). (21)

Consider a solution x(k) of (7) defined over N. Then, for all
k ≥ h,

x(k) = Eh(k)
[
Φ−1H (k, k − h)x∗(k)− x∗(k − h)

−Φ−1A (k, k − h)x̂(k) + x̂(k − h)
]
. (22)

Remark 3: Notice that (21) is a classical observer for the
system (7) when disturbances are known. Moreover, it is al-
ways possible to choose a decomposition of β(k, u(k), y(k))
and a gain L(k) so that the corresponding matrices A(k) and
H(k) are Schur stable, thus (20) and (21) are stable.

Proof: Consider a solution (x̂(k), x∗(k)) of (20)-(21)
associated with the solution x(k) defined over N. Then,
arguing as we did in the proof of Theorem 1, we have

x̂(k) = ΦA(k, k − h)x̂(k − h) +

k−1∑
`=k−h

ΦA(k, `+ 1)×

× [β(`, u(`), y(`)) + d(`)],
(23)

x∗(k) = ΦH(k, k − h)x∗(k − h) +

k−1∑
`=k−h

ΦH(k, `+ 1)×

× [β(`, u(`), y(`))− L(`)y(`) + d(`) + L(`)v(`)].
(24)

From properties (5)-(6), it follows that for all k ≥ h,
k−1∑

`=k−h

ΦA(k − h, `+ 1)[β(`, u(`), y(`)) + d(`)]

= Φ−1A (k, k − h)x̂(k)− x̂(k − h), (25)
k−1∑

`=k−h

ΦH(k − h, `+ 1)[β(`, u(`), y(`))

− L(`)y(`) + d(`) + L(`)v(`)]

= Φ−1H (k, k − h)x∗(k)− x∗(k − h). (26)

Combining (11), (25) and (26), we obtain, for all k ≥ h,

E−1h (k)x(k) = Φ−1H (k, k − h)x∗(k)− x∗(k − h)

− Φ−1A (k, k − h)x̂(k) + x̂(k − h). (27)

This allows us to conclude.

IV. FIXED-TIME INTERVAL ESTIMATION

Theorems 1 and 2 give in fixed time the exact value of any
solution x(k) of (7). However, these estimations cannot be
used when the disturbances d and v are unknown. The second
objective of the present note is to overcome this limitation
by assuming only that bounds d, d and v, v are known.



In this section, we consider the case where Assumptions
1 and 2 are satisfied and the matrix L(k) is selected as
described in (10). Next, we introduce the following matrices

Fh(k) = −Eh(k)Φ−1A (k, k − h), (28)

Gh(k) = Eh(k)Φ−1H (k, k − h). (29)

and the vectors

dL(k) =

(
k−1∑

`=k−h

Fh(k)ΦA(k, `+ 1)

+Gh(k)ΦH(k, `+ 1)

)+

d

−

(
k−1∑

`=k−h

Fh(k)ΦA(k, `+ 1)

+Gh(k)ΦH(k, `+ 1)

)−
d, (30)

dS(k) =

(
k−1∑

`=k−h

Fh(k)ΦA(k, `+ 1)

+Gh(k)ΦH(k, `+ 1)

)+

d

−

(
k−1∑

`=k−h

Fh(k)ΦA(k, `+ 1)

+Gh(k)ΦH(k, `+ 1)

)−
d, (31)

vL(k) =

(
Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)L

)+

v

−

(
Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)L

)−
v,

(32)

vS(k) =

(
Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)L

)+

v

−

(
Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)L

)−
v.

(33)

We are ready to state and prove the following result:
Theorem 3: Let the system (7) satisfy Assumptions 1 and

2 and let L(k) and h ∈ N, h ≥ 1 be such that Eh(k) given
in (12) is well-defined. Let u be a given input and consider
a solution x(k) of the system (7) defined over N. Then, for
all integer k ≥ h, the inequalities

x(k) ≤ x(k) ≤ x(k). (34)

with

x(k) = −Eh(k)

k−1∑
`=k−h

ΦA(k − h, `+ 1)β(`, u(`), y(`))

+ Eh(k)

k−1∑
`=k−h

ΦH(k − h, `+ 1)[β(`, u(`), y(`))

− L(`)y(`)]

+ dL(k) + vL(k), (35)

x(k) = −Eh(k)

k−1∑
`=k−h

ΦA(k − h, `+ 1)β(`, u(`), y(`))

+ Eh(k)

k−1∑
`=k−h

ΦH(k − h, `+ 1)[β(`, u(`), y(`))

− L(`)y(`)]

+ dS(k) + vS(k), (36)

hold.
Proof: From (11), we have

x(k) = −Eh(k)

k−1∑
`=k−h

ΦA(k − h, `+ 1)β(`, u(`), y(`))

+ Eh(k)

k−1∑
`=k−h

ΦH(k − h, `+ 1)[β(`, u(`), y(`))

− L(`)y(`)]

− Eh(k)

k−1∑
`=k−h

ΦA(k − h, `+ 1)d(`)

+ Eh(k)

k−1∑
`=k−h

ΦH(k − h, `+ 1) (d(`) + L(`)v(`)) .

(37)

From (37) and the definition of Fh(k) and Gh(k) in (28)-
(29), it follows that, for all k ≥ h,

x(k) = −Eh(k)

k−1∑
`=k−h

ΦA(k − h, `+ 1)β(`, u(`), y(`))

+ Eh(k)

k−1∑
`=k−h

ΦH(k − h, `+ 1)[β(`, u(`), y(`))

− L(`)y(`)]

+

k−1∑
`=k−h

(Fh(k)ΦA(k, `+ 1) +Gh(k)ΦH(k, `+ 1)) d(`)

+Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)Lv(`). (38)



From Assumption 2, we deduce that, for all k ≥ h,(
k−1∑

`=k−h

Fh(k)ΦA(k, `+ 1) +Gh(k)ΦH(k, `+ 1)

)+

d

−

(
k−1∑

`=k−h

Fh(k)ΦA(k, `+ 1) +Gh(k)ΦH(k, `+ 1)

)−
d

≤
k−1∑

`=k−h

(Fh(k)ΦA(k, `+ 1) +Gh(k)ΦH(k, `+ 1)) d(`)

≤

(
k−1∑

`=k−h

Fh(k)ΦA(k, `+ 1) +Gh(k)ΦH(k, `+ 1)

)+

d

−

(
k−1∑

`=k−h

Fh(k)ΦA(k, `+ 1) +Gh(k)ΦH(k, `+ 1)

)−
d,

Similarly,(
Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)L

)+

v

−

(
Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)L

)−
v

≤ Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)Lv(`)

≤

(
Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)L

)+

v

−

(
Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)L

)−
v.

It follows that

dS(k)

≤
k−1∑

`=k−h

(Fh(k)ΦA(k, `+ 1) +Gh(k)ΦH(k, `+ 1)) d(`)

≤ dL(k), (39)

vS(k) ≤ Gh(k)

k−1∑
`=k−h

ΦH(k, `+ 1)Lv(`) ≤ vL(k), (40)

with dL(k), dS(k), vL(k), vS(k) are the vectors defined in
(30), (31), (32), (33).

From (38), (39) and (40), we can conclude.
The motivations of Theorem 2 also motivate the following

result:
Theorem 4: Let the system (7) satisfy the conditions in

Theorem 3. Let u(k) be a given input and consider a solution
of (7) defined over N. Let us introduce dynamic extensions:

za(k + 1) = A(k)za(k) + β(k, u(k), y(k)), (41)
zh(k + 1) = H(k)zh(k) + β(k, u(k), y(k))− L(k)y(k),

(42)

Then, for all k ≥ h, the following inequalities are satisfied:

Υ(Zk) ≤ x(k) ≤ Υ(Zk), (43)

with Z = (za, zh) and the bounds Υ, Υ are an estimated
interval for the system (7) given by

Υ(Zk) = Eh(k)[za(k − h)− Φ−1A (k, k − h)za(k)

+ Φ−1H (k, k − h)zh(k)− zh(k − h)] + dL(k) + vL(k),
(44)

Υ(Zk) = Eh(k)[za(k − h)− Φ−1A (k, k − h)za(k)

+ Φ−1H (k, k − h)zh(k)− zh(k − h)] + dS(k) + vS(k),
(45)

where dL(k), dS(k), vL(k), vS(k) are the vectors defined in
(30), (31), (32), (33).

Proof: For a solution x(k) of (7) defined over N, we
have

za(k) = ΦA(k, k − h)za(k − h)

+

k−1∑
`=k−h

ΦA(k, `+ 1)β(`, u(`), y(`)), (46)

zh(k) = ΦH(k, k − h)zh(k − h)

+

k−1∑
`=k−h

ΦH(k, `+ 1)[β(`, u(`), y(`))− L(`)y(`)].

(47)

These equalities can be rewritten as

−
k−1∑

`=k−h

ΦA(k − h, `+ 1)β(`, u(`), y(`))

= za(k − h)− Φ−1A (k, k − h)za(k),
(48)

k−1∑
`=k−h

ΦH(k − h, `+ 1)[β(`, u(`), y(`))− L(`)y(`)]

= Φ−1H (k, k − h)zh(k)− zh(k − h).
(49)

Theorem 3 ensures that the inequalites (34) hold. Then from
these inequalities and the equalities (46) and (47), we deduce
that the inequalities (43) are satisfied.

V. AN EXAMPLE

In this section, we consider the system borrowed from [18]
which is of the form (7) with C = [−0.5 1.5 0],

A(k) =

 0.2e−
k

100 0.6 0
0 0.5 sin(k)
0 0 0.7

 ,
β(u(k), y(k)) =

 0.2 sin(0.2k)
1.8 sin(0.2k)
0.3 sin(0.2k)

 ,
d(k) =

 1
4 sin(2k)
1
4 sin(2k)
1
4 sin(2k)

 and v(k) = 0.3 cos(k).



We choose L(k) =
[
1
4 0 0

]>
. When h = {3; 4}, one can

check by Matlab that det(A(k)) and det(A(k)+L(k)C(k))
are different from 0 for all k ∈ N. That means that the
matrices A(k) and H(k) are invertible for all k ∈ N. Then,
all assumptions are satisfied for h = {3; 4}.

We apply Theorem 2 and select the initial values x1(0) =
1, x2(0) = −1 and x3(0) = 2 . Then, for the value of the
delay h = 3, we implement the dead bit estimation of the
state x given by (22). The simulation result is plotted in Fig.
1.

Finally, we implement the dynamic extensions xa and xh
given by (41)-(42), and the upper and lower bounds given
by (44)-(45). Fig. 2 illustrates one example where h = 4
with the same initial values and input. We choose the known
bounds of disturbances d =

[
1
4
1
4
1
4

]>
, d = −d, v = 0.3 and

v = −0.3.
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Fig. 1. Real state and dead bit estimate for h = 3.
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Fig. 2. Fixed-time interval estimation with upper and lower bounds for
h = 4.

VI. CONCLUSION

Based on the use of past values of the input and the output
of the studied system, a new technique of design of fixed-
time observers for a family of discrete-time nonlinear time-
varying systems is presented. The disturbances on the state

as well as on the measurement are both taken into account.
It is worth highlighting that neither information on the
bound of the initial conditions nor direct or indirect notion
of nonnegative and cooperative system are needed in our
development. We provide exact values of the solutions in the
absence of uncertainties and intervals when the uncertainties
are present after a fixed time. Finally, an illustrative example
highlights the efficiency of our methodology.
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