, Le sous groupeétudié est composé de 166 patients suivis sur quatre visites. L'objectif est d'identifier les marqueurs ayant le plus d'impact sur le Joint Space Width (JSW)

. Bibliographie,

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B, 2006.

K. Y. Liang and S. L. Zeger, Longitudinal data analysis using generalized linear models, Biometrika, 1986.

D. B. Rubin, Multiple Imputation for Nonresponse in Surveys, Wiley Series in Probability and Statistics, 1987.

C. W. Shen and Y. H. Chen, Model selection of generalized estimating equations with multiply imputed longitudinal data, Biometrical Journal, 2013.

Q. Chen and S. Wang, Variable selection for multiply-imputed data with application to dioxin exposure study, Statistics in medicine, 2013.

A. M. Wood, I. R. White, and P. Royston, How should variable selection be performed with multiply imputed data?, Statistics in medicine, 2008.

. Van-buuren, . Stef, and . Groothuis-oudshoorn, Karin, mice: Multivariate imputation by chained equations in R, Journal of statistical software

W. J. Fu, Penalized estimating equations, Biometrics