L. Breiman, Statistical Modeling: The Two Cultures, vol.16, 2001.

D. Donoho, 50 years of Data Science, Tukey Centennial workshop, 2015.

G. Box and &. Draper, Empirical Model-Building and Response Surfaces, 1987.

G. Saporta, Models for Understanding versus Models for Prediction, Compstat Proceedings, Physica Verlag, pp.315-322, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01125563

G. Shmueli, To explain or to predict ? Statistical science, vol.25, pp.289-310, 2010.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning : data mining, inference, and prediction, 2009.

V. Vapnik, Estimation of dependences based on empirical data, 2006.

H. Wallard, Using Explained Variance Allocation to analyse Importance of Predictors, 16 th ASMDA Conference Proceedings, pp.1043-1054, 2015.

C. Anderson, The End of Theory: The Data Deluge Makes the Scientific Method Obsolete, 2008.

P. R. Rosenbaum and &. D. Rubin, The Central Role of the Propensity Score in Observational Studies for Causal Effects, Biometrika, vol.70, pp.41-55, 1983.

L. Bottou, Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising, Journal of Machine Learning Research, vol.14, pp.3207-3260, 2013.

P. Bühlmann, Causal statistical inference in high dimensions, Mathematical Methods of Operations Research, vol.77, pp.357-370, 2013.