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CORRESPONDENCE ANALYSIS, WITH AN EXTENSION 

TOW ARDS NOMINAL TIME SERIES 

J.-C. DEVILLE 

Institut National de la Statistique et des Etudes Economique, 75675 Paris, France 

G. SAPORTA

Université René Descartes, 75016 Paris, France 

Correspondence analysis is a technique for studying the relationship between two nominal 
variables which uses mainly simultaneous graphical displays. It bas been generalized to more 
than two variables under the name of 'multiple correspondence analysis'. 'Qualitative harmonie 
analysis' is an other extension towards individual time-series where one observes the evolution of 
a nominal variable through a finite period of time. The present paper is based essentially on the 
concept of multidimensional scaling by means of barycentric representation. 

1. Introduction

Correspondence analysis is perhaps the most popular method of

multidimensional data analysis in France: for J.P. Benzécri and his school, 

correspondence analysis has even become almost synonymous with data 

analysis. 

The reasons of such a success are multiple and are due mainly to the 

suggestive power of the graphical displays. A whole set of interpretation rules 

using specific measures such as the contributions and the practice of 

additional points bas been developed. Moreover, correspondence analysis 

proved to be a robust method as its results are remarkably stable if the data 

are perturbated [Lebart et al. (1977)]. 

Correspondence analysis handles only categorical data (numerical variables 
have to be discretized). lts initial field of application is that of contingency 
tables where data are cross-classified according to two categorical variables. 
This is the topic of section 2. Although the principles are not new 
[Hirschfeld (1935), Fisher (1940)] as, mathematically, correspondence analysis 
is identical to canonical analysis of contingency tables [Kendall and Stuart 
(1961, pp. 568-574)], its rediscovery as a method of exploratory data analysis 
is recent (J.P. Benzécri in the sixties). The fondamental point is the use of the 

various canonical variables - not only of the first one - to obtain 



 

graphical displays for the categories of the variables or, in other words, of 
the rows and columns of a contingency table in a common space of low 
dimension. 

Instead of the classical derivations of the correspondence analysis as a 
canonical correlation analysis or as two simultaneous principal components 
analyses of rows and columns proportions, we propose here a presentation 
based upon the graphical displays of categories over a 'good' system of axes. 
This presentation has the advantage of facilitating, in section 3, the 
presentation of multiple correspondence analysis, that is, the case where 
more than two categorical variables have been observed for a set of n

individuals. Once more we arrive at known results: the equations are that of 
the principal components of scale [Guttman (1941)] but the use is different 
and is similar to that of HOMALS [see Gifi (1981)]. Finally, in section 4, we 
present a continuous extension of multiple correspondence analysis to an 
infinite number of categorical variables associated to the different states of a 
set of individuals through the time [Deville and Saporta (1979)]. 

2. Correspondence analysis of a contingency table

Let N be a contingency table with m 1 rows and m2 columns whose 
elements are nk1; X i and x2 will be the two related nominal variables with m 1 

and m2 categories, and n is the total number of individuals. We suppose 
m 1 �m2 • Let X 1 and X2 denote the matrices of size (n,m 1) and (n,m2), 

associated with X i and Xi respectively, of the indicator variables of their 
categories, 

X 1 (i, k)= 1 if individual i belongs to category k of X i, 

=Ü if not. 

So, N = X'1 X 2• Denote by D 1 and D2 the diagonal matrices of marginal 
frequencies of X i and X2, 

(1) 

D 1
1 N and N D2 

1 are therefore the two arrays of conditional frequencies
whose elements are nk1/nk . and nk1/n_1, respectively, where a dot denotes 
summation over an index. 

2.1. Simultaneous representation of the categories of x 1 and Xz 

The categories of Xi and x2 define subgroups of size nk . or n.1 of the 
population. If, by hypothesis, we know a numerical variable z measured for 



each of the n individuals, we are able to compute the average value of z for 
each subgroup; the different means for the m 1 categories of Xi can be 
arranged as an m 1-vector a 1

, such that 

a1 
= (X'1X 1 )-

1X�z= D1
1X'1z,

and for Xz, 

a2 =Di 1 X�z. 

(2) 

It is then easy to display simultaneously the (m1 + m2) categories of Xi and Xz
on an axis according to the category means. If z has zero mean, the 
dispersion of the categories of Xi along this axis (i.e., the variance due to x 1) 
IS 

z'X 1D1
1 X'1z=a�D1a1 =z'A 1z, (3) 

where A 1 = X 1 (X� X 1 )-
1 X'1 is the orthogonal projector (regression operator) 

onto the subspace spanned by the columns of X 1. The greater this quantity 
is, the better the categories Xi will be separated on the axis associated with z. 

Of course the correlation ratio 112(z I x1 )=a'1D1ai/z'z is maximum and equal 
to 1 if z=X1a 1 , that is to say if ail the individuals of each category of Xi 

have the same value of z. Such a variable z would be optimal for Xi · 
Actually we do not know such a variable z and we just have Xi and Xz · 

We will now try to find an artificial variable z that is optimal for bath Xi 

and Xz . Since it is generally impossible to have simultaneously 112(z I x i l = 1
and 112(z I x2) = 1 we will look for a variable z with fixed variance such that on
average the variance of z due to Xi and Xz be maximum. So the problem is 
to maximize 

the solution of which is to take for z the eigenvector of ½(A 1 + A 2) associated 
with its greatest non trivial eigenvalue µ = µ 1. This artificial variable pr.ovides 
the 'best' representation of the categories of Xi and Xz along a unique axis 
and the coordinates of the categories Xi and Xz are given by the components 
of a1

= D1
1 X'1z and a2 = Di 1 X�z.

Notice that, from ½(A 1 +A2)z=µ 1z, 

(4) 

implies that µz=½(X1a 1 +X2a2). The variable z takes the same value for ail 
the nk1 individuals of the cell (k, [) of N. Since µ0 = 1 is always the greatest 



1

eigenvalue of ½(A 1 +A2) associated with a constant z, this trivial solution 
must however be eliminated. 

Suppose now that we want to display the categories of Xi and x2 in a 
plane and not just along a single axis (for there is no reason why the 
phenomenon might be represented by a single dimension). We then need a 
second variable z uncorrelated with the first one, like in principal 
components analysis, providing an other extremum of ½z'(À + A2)z. The 
solution is then provided by the second non-trivial eigenvector of ½(A 1 + A2) 

associated with the second largest eigenvalue µi, and so on. 
Since z is an n-vector the solution of the preceding eigenequation is 

cumbersome and it is simpler to obtain the coordinates of the categories 
directly along the axes. This is simply done by substituting a1 = D1

1X'1z and
a2

= D2
1X�z into µz =½(X1a 1 +X2a2). As X�X

2=N, we have 

(5) 

Hence, by substituting again, 

(6) 

As D1
1 N and D2

1 N' are the two arrays of conditional frequencies we now
have established the following property: 

Property 1. The vectors a 1 and a2 of coordinates of the categories of 
variables are eigenvectors of the product of the two matrices obtained by 
multiplication of the arrays of conditional frequencies. 

If we define À=(2µ-1)2, we have O�À�l since 0�µ�1. Omitting the 
trivial eigenvalue ),0 = 1, there exist at most m 1 -1 non-trivial eigenvalues (as 
m 1 � m2). Knowing a1 we simply get a2 by 

Usually a 1 and a2 are normalized as follows (see subsection 2.2): 

Since À0 
= 1, and 

m-1 
1+ L À; = tr D1

1ND2
1N' =II(n;,lnk_n.,),

i= 1 k l 

(7) 

(8) 

(9)



we have: 

Property 2. The sum of the non-trivial eigenvalues is equal to Pearson's </J 2 

of dependence, that is to say the usual chi-square divided by n.

We also have [see Kendall and Stuart (1967, p. 574)]: 

Property 3. Reconstruction of N: 

(10) 

These two properties illustrate the fact that correspondence analysis 1s an 
analysis of the departure from independence in a contingency table. 

2.2. H ow this presentation can be linked to other ones 

Correspondence analysis may be considered as a special case of canonical 
correlation analysis between the two sets of indicator variables associated 
with the categories X i and Xi [Cailliez and Pagès (1976)]. It is also a method 
of assigning scores to the categflries (the scores are the coordinates derived in 
the preceding subsection), such that the following holds: 

-the bivariate distribution of (ç 1 = X 1 a1 , ç2 = X 2a2) has both regressions
linear [Hirschfeld ( 1935)], that is to say: the conditional me ans of ç 1 given
ç2 (or x2) are linear functions of ç2 and vice versa;

-the linear correlation coefficient between ç1 and ç2 is maximal (and equal
to J½) [Lancaster (1957), Williams (1952), Kendall and Stuart (1967)];

- the discrimination of the categories of x 1 by means of ç2 is maximal
[Fisher (1940)].

The most popular presentation in France, used by J.P. Benzécri and his
team, is related with principal components analysis. Consider the array 
D1

1 N as a data matrix of m
1 

'individuals' (the rows) described b;: m2 
variables, the row frequencies nk1/nk . (l = 1, 2, ... , m2) being the variable values. 
The 'individuals' here are weighted according to the matrix (1/n)D1 of the 
row-marginal frequencies. The distance between rows is the so-called chi
square distance [Guttman (1941)], 

m 

d2 (k, h) = L (n/n_1)(nkifnk . -nhi/nh_)
2 , ( 11) 

1� 1 

i.e., the metric in Rm2 is nD2
1

• We therefore obtain directly the coordinates of 



the rows, a 1 , on the principal axis by solving the following equation 
[principal coordinate analysis, see Mardia et al. (1979)]: 

(12) 

where the four matrices at the left-hand side are the data matrix, the metric, 
the transposed data matrix and the weights, respectively. This reduces· to 
D1

1 ND2
1 N'a 1 =),a 1 . 

Conversely, the coordinates of the columns are obtained by submitting to 
a principal coordinate analysis the data matrix N D2 

1 with the weights 
(1/n)D2 and the metric D1

1 n; the eigenequation then is D2
1 N'D1

1 Na2 =Àa2. 

There is a duality between these two principal components analyses, but here 
the simultaneous representation is merely a device and has no strong 
theoretical background because the categories of Xi and Xz belong to two 
different vectorspaces. 
As the eigenvalues À are the variances of the principal components, the 
natural normalization of the coordinates is 

but this holds only for the analysis of a contingency table and not for 
multiple correspondence analysis (see section 3). 

2.3. Use and interpretation of correspondence ana/ysis 

Let us take the following demographic example as an illustration. N is the 
table (omitted here) giving the distribution of the population of twelve 
European countries (West Germany, France, Italy, The Netherlands, 
Belgium, Luxemburg, Great Britain, Ireland, Denmark, Greece, Portugal, 
Spain) over sixteen age groups (0-4, 5-9, . . .  , 75 and over) in 1979. Of the 
eleven non-trivial eigenvalues the first three explain 90% of the <f;2

: 61.4%, 
17.4% and 10.7%, respectively. The simultaneous representation of the first 
two dimensions is given in fig. 1. 

Table 1 helps us.to know which categories have contributed mainly to the 
determination of the axes. As 

(13) 

the contribution of category k to À is defined by 

(14)



0 -----



J.Table 1
Contributions to the eigenvalues.

Eigen values 
Marginal 

À 1 (61.4%) À.2 (17.4%) À
3 

(10.7%) freq uencies 

Countries 
West Germany (-)0.478 (-)0.170 (-)0.011 0.1939 
France 0.012 0.211 (-)0.456 0.1688 
ltaly 0.001 (-)0.066 0.000 0.1797 
The Netherlands 0.019 0.023 (-)0.005 0.0442 
Belgium (-)0.003 0.019 (-)0.016 0.0311 
Luxemburg (-)0.001 0.000 (-)0.001 0.0011 
Great Britain (-)0.016 0.213 0.460 0.1769 
Ireland 0.072 (-)0.001 0.007 0.0106 
Denmark 0.000 0.073 0.028 0.0159 
Greece 0.004 (-)0.021 0.001 0.0298 
Portugal 0.110 (-)0.096 0.013 0.0310 
Spain 0.284 (-)0.098 0.002 0.1169 

1. 1. 1. 1.

Age 
0-4 0.377 (-)0.026 (-)0.000 0.0664 
5 -9 0.160 0.001 0.001 0.0758 

10-14 0.008 (-)0.030 0.022 0.0832 
15-19 0.003 (-)0.004 0.000 0.0811 
20-24 0.010 0.008 (-)0.043 0.0747 
25-29 0.001 0.069 ( -)0.148 0.0719 
30-34 0.004 0.192 0.000 0.0690 
35-39 (-)0.096 (-)0.212 (-)0.000 0.0626 
40-44 (-)0.058 (-)0.195 (-)0.017 0.0630 
45-49 -0.000 (-)0.030 (-)0.038 0.0609 
50-54 (-)0.003 (-)0.005 (-)0.007 0.0594 
55-59 (-)0.021 0.029 0.050 0.0555 
60-64 0.000 0.007 0.616 0.0410 
65-69 (-)0.076 0.001 0.024 0.0470 
70-74 (-)0.088 0.008 0.002 0.0385 
75 and over (-)0.093 0.182 (-)0.032 0.0499 

1. 1. 1. 1. 

which may be compared for instance to the importance of category k in the 
population, nk./n. It is also useful to write the contribution with the sign of 
the coordinate as some contributions may be of opposite meaning. 

We can see that the first dimension reveals a strong difference between 
West Germany (on the left of the figure) and Ireland, Spain and Portugal (on 
the right), which is mainly due to the difference between the age groups over 
65 on the one side and the age groups under 10 on the other. This dimension 
may be identified as a fertility one which is closely related with birth-rate. 

On the vertical axis, France, Great Britain and Denmark stand apart from 
the other countries and this phenomenon is due to the fact that the 35-39 
and 40-44 age groups are less numerous (in percentages) in these three 



countries than in the others. One may observe too that the 30-34 age group 
has a great positive contribution to this dimension; the second dimension 
may be explained by the diminution of the birth-rate during the years 1935-
1939 combined with the baby-boom after the Second World War. 

The third dimension reveals a difference between France and Great Britain 
due to the 60-64 age group, which may be explained by a gap in the birth
rate in France during the First World War, which did not occur in Great 
Britain. 

Of course, much more could be said; for instance about the large 
contribution of the '75 and over' age group to the second eigenvalue, but we 
only intended to show that the essential information about the structure of a 
contingency table can be given very quickly by correspondence analysis. 

3. Multiple correspondence analysis

3.1. Extension top variables 

Suppose now that the n individuals are described by p nominal variables 
with m1, m2, ... , m

P 
categories. Let X denote the supermatrix (X 1 , X 2, ... , X p) 

of ail indicator variables and D = diag(D 1, ... , D p) the diagonal supermatrix of 
ail marginal frequencies. Let z be again a zero-mean numerical variable 
providing an unidimensional scale for the n individuals. 

The criterium presented in section 1 may be generalized as follows. The 
best representation of categories of ail variables will be obtained if 

(1/p) L a1Di a
i 

is maximum,
j=l 

(15) 

in other words, if the p possible analyses of variance are maximized on 
average. We have obviously the following results: z is the eigenvector of 
(1/p)L Ai associated with the greatest non-trivial eigenvalue µ and 

(16) 

A multidimensional configuration is then obtained with the other 
eigenvectors. The total number of non-trivial eigenvalues is L m

j
-p, as we 

have p-1 linear relationships between the indicator variables. 
Unlike p=2, it is not possible to find an eigenequation for each a

i 
but 

only for the whole set of the a
i
, that is to say, for the supervector a 

=(a'1 , . . .  ,a�)' with Imi components: substituting (16) in the equation 
(1/n) L Aiz = µz gives 

(17)



The preceding equation is the expansion in a partitioned form of 
(1/p)XD- 1X'Xa=µXa, as X=(X 1,X2, . . •  ,X

P
); hence, 

(18) 

where X'X is the super-array of all 2 x 2-contingency tables of the x/s. The ai 
are normalized by 

(1/np)a'Da=(l/np) I,a1Di
a

i =µ. 
j 

(19) 

We notice that except for p = 2 the a1Di
a

i 
do not necessarily have the same 

value. As 

(1/v)I Aj=(l/p)L xpj-
1 X1=(1/p)xv- 1 X', (20) 

the sum of each row of X equals p, and terms of D are the suros of the 
columns of X. Property 1, given in subsection 2.1, applies here and we have 
the fundamental result: 

Property 4. Multiple correspondence analysis of X i, x2, ... , X
p 

is identical to 
the formal correspondence analysis of the disjunctive array X considered as a 
contingency table. 

lt must be pointed out here that the sum of non-trivial eigenvalues equals 
(l/p)L(mi-1) and has no statistical importance: not much meaning can be 
attached to the percentage of explained variance, since, as a matter of fact, 

µ� 1: if for instance, the average number of categories is 5 for the p variables, 
µ1 � 25%. The interpretation of the axes will be based essentially upon the 
contributions of the categories and the variables. 

Finally, notice that the same coordinates of all categories (apart from the 
multiplicative constant µ½) may be obtained by performing a correspondence 
analysis of X'X. In this case the eigenvalues are µ2 instead ofµ, and we have 

(21) 

the average value of all K. Pearson's </)2 between Xk and Xi for k = 1, 2, ... , p
and l = 1, 2, ... , p. This clearly shows that multiple correspondence analysis is 
a method for studying the relationships between p variables X

i 
using only the 

two-by-two-dependencies. 

3.2. Sorne other enlightenïng presentations 

The preceding solution may be obtained in various ways. The first one is 



related with Guttman's principal components of scale, or homogeneity
analysis. One of the main ideas of factor analysis is that different variables
may measure the 'same thing' and can thus be represented by a unique scale.
When the variables are nominal, Guttman (1941) proposed the following
quantification technique: assign a numerical value to each category of the X

i 

such that the scores of the individuals be as homogeneous as possible for the 
p variables and as difîerent as possible between individuals. 

Let ç
i (vector of length n) be a zero-mean quantification of Xi : çi = Xiai,

where ai 
is the mrvector of scores for Xi

• Let ç_ be the vector of average 
scores, which will be taken as the unique desired scale, 

For each individual i, the heterogeneity of his scores is measured by 

(l/p)l)çij -ç;.)2, 
j 

which, averaged over ail individuals, is equal to 

(22) 

(23) 

The problem is to minimize the latter quantity. Since we have the classical
analysis of variance equation, 

(l/n)Lçl +(l/np)LL (çii -ç;,)2 =(l/np)LL (G,
i i j i j 

an equivalent problem is to maximize the correlation ratio 

(1/n) L çr_l(l/np) L� �;i =(l/np2)a'X'Xa/(l/np)"'[_a1Diai 
l l J J 

=(l/p)(a'X'Xa/a'Da). (24) 

The maximum is attained if a is the eigenvector of (l/p)D- 1 X' X
corresponding to its maximal eigenvalue and we find again the first 
dimension of multiple correspondence analysis. 

A second and closely connected way of obtaining the multiple
correspondence analysis is based upon principal components analysis of 
nominal variables. lt is well known that the first principal component z of a 



set of p numerical variables provides the best unidimensional configuration 
of n individuals in the sense of var (z) being maximal. Hence, the idea of 
quantifying the x/s into ç

i 
= X

i
a

i 
such that the first principal component of 

the t's be of maximal variance. In other words, we look for a/s such that 
the first eigenvalue µ1 of the correlation matrix of the Ç; can be maximized. 

The result is that the a
i 

are the coordinates of the categories of X
i 

on the 
first axis of multiple correspondence analysis. For any set of known ç

i 
their 

first principal component z maximizes L r2(z; ç). When looking for the best 
set of ç

i
, we have to maximize that quantity over ç

i 
and z. Since ç

i 
= X

i
a

i
, 

the problem may be formulated as 

max max L r2(z; Xi
a

i). 
aj z j 

But the maximum over the a
i 

of r2(z; X
i
a

i
) for fixed z is equal to the squared 

multiple correlation coefficient between z and the columns of X
i
, R

2(z; X
i), 

which is equal to the correlation ratio 172(zlx
i)=z'A

i
z, since X

i 
is the 

indicator matrix of X
i
• Thus the problem reduces to 

maxiz'A
i
z subject to z'z=l, 

z i 
(25) 

and the solution is given by the first eigenvector of L
i
A

i
. Since the two 

criteria of optimality, 

max L r2(z; ç) for numerical variables, 
i 

max L 172(z I x) for nominal variables, 
i 

(26) 

are similar, we may consider multiple correspondence analysis equivalent to 
principal components analysis for nominal !lata, and since 172(z I Xi)= R2(z; X

j
), 

as a special case of Carroll's (1968) generalized canonical analysis. 
The method of reciprocal averaging is another approach very classical in 

psychometric literature and is one of the easiest way of presenting 
multidimensional scaling of nominal variables [Kuder and Richardson (1933), 
Nishisato (1980)]. It consists of a simultaneous representation of individuals 
and of categories of the nominal variables such that: 

(1) the coordinate of a category be equal to the average coordinate of
individuals who belong to that category; and

(2) the coordinate of an individual be equal to the average values of the
coordinates of the categories to which he belongs.



Starting from an arbitrary set of values for the individuals, say z, we may 
obtain by an iterative process the coordinates of the categories and then a 
new variable z, and so on. Provided we impose a normalization constraint, 
the algorithm converges very quickly and is the basis of some alternating 
least squares quantification techniques such as HOMALS [see Gifi (1981)]. 
Actually the two conditions mentioned above cannot both be satisfied as 
ai=D- 1X1z and z=(l/p)LXiai do not hold simultaneously; we need a 
constant a as small as possible (since it may be shown that a� 1), such that 

a=aD- 1X'z and z=(l/p)aXa. (27) 

By substituting we find 

(28) 

and we have again the first solution of multiple correspondence analysis, 
since µ1 = 1/a2 must be maximized: 

3.3. Use and interpretation of multiple correspondence analysis 

This technique is widely used for the screening of surveys. The graphical 
representation of ail response categories allows for a very fast detection of 
the more interesting relationships and directs the researcher towards the 
more interesting cross-tabulations. 

A major practice is to use additional variables. Usually the set of variables 
is split up into two groups: the working variables, with which the axes are 
computed, and the passive ones, which may be easily represented on the 
system of axes as usual. The categories of the passive variables are 
represented through the z variables by the mean-value of individuals which 
belong to them. If the additional variables are numerical, we can compute of 
course the product-moment correlation coefficient with the z variables. 

The use of additional variables may serve two different goals. First it 
provides a quick approximate regression in the sense that we actually project 
the passive variables upon the subspace spanned by the z variables. We may 
interpret this as an 'explanation' of some dependent variables by nominal 
predictors. For instance [Bouroche and Saporta (1980)], a sample of 6,083 
individuals are described by a set of twelve sociological and cultural 
variables with a multiple correspondence analysis. Theo the subgroup of 
individuals who have seen l:!- certain movie may be projected upon the system 
of the first axes, which allows us to determine quickly the average pattern of 
these individuals. 

The second feature is concerned with the validation of the results. 
Interpreting the outcome of an analysis using the working variables may be 



 

subject to· criticism: maybe the results are nothing but an artefact due to the 
mathematical technique that has been used. If, however, the meaning of an 
axis is obtained by a correlation with a variable that has not contributed to 
its determination the interpretation will be more convincing; moreover some 
approximate statistical significance tests may be performed such as a one
way analysis of variance to test equality of means of an additional 
categorical variable over an axis. 

4. Individual time-series: Qualitative harmonie analysis

Correspondence analysis can also be extended to qualitative data varying
over a finite time interval T. For convenience, we will assume that T is [O, 1] 
and that all the time-data are expressed within this interval by means of a 
linear transformation. The category space is finite with elements k numbered 
from 1 to m. For every individual i (i = 1, ... , n), the data consist of the 
records of the successive states in which he has been, with the exact dates 
when he has moved from one state to another. We are able, therefore, to 
compute for each time t the matrix X1

, with n rows and m columns, 
indicating the state k to which the individual i belongs at time t. In the same 
way as correspondence analysis dealt with two nominal variables, and 
multiple correspondence analysis dealt with p variables, we now have to deal 
with a continuous infinity of nominal variables indexed by time. 

4.1. The equations 

We try, once more, to define an artificial variable z, independent of time 
which describes the trajectories of each individual over time 'as well as 
possible'. Formally, z is an n-vector having one coordinate per individual. At 
time t, we can compute the mean of the coordinates of z corresponding to 
individuals being in state k. Those means can be arranged in the m-vector a

1 

given by 

(29) 

It is well-known that this vector minimizes the sum of the squres of the 
coordinates of z- X

1
a

1 
and that we have the identity (with the notation 

\\xll2 =x'x for every n-vector x) 

(30) 

Integrating over T, and considering the second term at the right-hand side as 
a residual, we get, using (29), 

1 

z' z = J z' X,(x;x,)- 1 x;z dt+ mean of residuals. 
0 

(31)



 

The variable z we want to compute maximizes the quantity 

z'Qz/z'z, (32) 

with 

1 

Q= f Xi
(X;X

1
)-

1 X;dt, (33) 

the mean over time of the projection operator onto the subspace generated 
by the columns of X1

• 

The matrix Q is symmetric positive definite and its elements are easy to 
compute. If individuals i and j are not in the same state at time t, the 
corresponding element in X

i
(X;X1)-

1 x; is O; if they are in the same state at
time t, say k, its value is 1/nL with nt denoting the number of individuals 
who are in state k at time t. The matrix Q appears to be a measure of 
similarity between the individuals, integrating elementary similarities indexed 
by the time. 

The problem to solve remains formally the same as in the previous 
sections and its solution is given by the eigenvector of Q associated with the 
largest non-trivial eigenvalue. Notice that the vector / with all its coordinates 
equal to 1, is an eigenvector of Q associated with eigenvalue 1. This solution 
has no statistical interest; it shows, however, that all its other solutions 
satisfy l'z=O and that we could, without any Joss of generality, impose on z 
the restriction of zero mean. 

The relations between z and the vector valued function a
1 

are of interest. 
Starting from the eigenvalue equation ..l.z = Qz, we get by straightforward 
calculation 

1 

.À.as
= f (X:Xs)- 1 x:x1a1 dt. (34) 

The matrix N,, = x:x
1 

is the m x m array of numbers nk�' of those 
individuals who were in state k at time s and in state l at time t. Of course, 
N

11 
is the diagonal matrix of the number nt of individuals who were in state 

k at time t. The matrix (X�X
s)- 1 X�X

1 
is the array of conditional frequencies 

with entries v!:, the probability of being in state I at time t, knowing that 
one was in state k at time s. Therefore, the a

1 
function is the solution of the 

equations 

(35) 

It 1s formally equivalent to solve this set of equations or to solve .À.z = Qz, 



but, curiously, the former turns out to be easier from a computational point 
of view. 

4.2. Practical solution: Approximation procedure 

The matrix Q is generally too large to be handled numerically. In practice 
we will try to compute an approximation of the a,-fonction in a prescribed 
form. Here, we will outline an approach that satisfies the usual practical 
needs, although it is not the most general one. We look for a solution in the 
form 

L 

a, = I a.1fz(t), (36) 
t = 1 

where a.1 is a family of unknown m-vectors, and fz(t) a family of known 
numerical fonctions, chosen to be easy to handle. As a matter of fact, we 
replace the set of ail m-vector valued fonctions on T by a finite-dimensional 
subspace generated by (36). The fonctions fz(t) must of course be linearly 
independent. It is also convenient that the subspace generated by the J; 
contains the constant fonction. The reason is that the vector fonction having 
ail its coordinates equal to 1 is a trivial solution of (34), since z = 1 is the 
solution of the initial eigenvalue problem. It is useful not to !ose this solution 
in the approximation procedure in order to be sure, by orthogonality, that 
the non-trivial solutions will be centered and uncorrelated. The a. vectors 
may satisfy some other constraints such as nullity of some specific 
coordinates. 

We look for the 'best substitute' that satisfies (34) for the true solution of 
(34). It turns out to be also the solution of a 'projected statistical problem' in 
a finite-dimensional space. Under some mild assumptions it can be shown 
that the approximate solution converges to the true ones, when the 
dimension l of the approximation increases. 

The problem is now to find a z and a, that satisfy (36) and minimize 

llzll-
2 Jllz-X,a,ll2 dt. 

0 

(37) 

The simplest and most usual way to choose the .ft(t) fonctions consists in 
choosing (L+l) points t1 in T, such that 0=t0<···<t1<t1+ 1<···<tL=l, 
and to define 

=Ü elsewhere. 



J 

In this case a, =a.1 if t belongs to [t1 _ 1, t1] and we have simply to minimize 

Define 

L t1 

L J [ -2z'Xr11.1 +a.;x;xta.,] dt. 
I= 1 t1_ 1 

t 

X
1
dt and D1

= J 
1
1-1 

(38) 

(39) 

The m x m matrix V, has as its entries the time spent by the ith individual in 
the kth state between t1 _ 1 and t1• The m x m matrix D1 is diagonal and has as 
its entries the total time spent by ail individuals in the kth state during the 
1th interval. It is clear that a.1 = D,- 1 Viz and that the calculations are going on 
exactly as in subsection 2.1. Matrix D1 plays the role of the D

i 
and V, plays 

the role of the Xi
. In fact the computation cornes down to performing 

correspondence analysis on the table ( Vi, V2, ..• , VL)-
This table is no longer a disjunctive table, but a table of the Lx m new 

variables, 'time spent during the /th interval of time in the kth state'. For the 
computation we have only to create these variables and then to use standard 
correspondence analysis software. Ali the interpretations of multiple 
correspondence analysis can be utilized; see, for instance, Benzécri (1973) and 
Lebart et al. (1977). The time dimension, however, is especially usefol to 
determine the meaning of the factors. 

The most general way to examine the question of approximation is to 
consider the a

1 
as a numerical fonction of two variables: time and category. 

The solution is searched for, in a prescribed finite-dimensional subspace of 
this set of fonctions. The computation generally does not corne down to 
correspondence analysis, but rather to principal components analysis with a 
special metric derived from the data [see Deville (1982)]. 

As in multiple correspondence analysis, there are many different ways to 
present qualitative harmonie analysis. One of them seems to be of special 
interest because it generalizes to qualitative data the Karhunen-Loève 
expansion of a stochastic process. The point is to define an operator-valued 
covariance of two nominal variables by the product of their conditional 
expectation operator [Deville and Saporta (1980), Saporta (1981), Deville 
(1982)]. 

4.3. An application: Women who have been married at least three times 

The data corne from two French retrospective surveys in fertility. 
Qualitative harmonie analysis has been performed using data about 423 
women who had been married three times or more for whom sufficient 
information was available, viz. the precise date of each marriage and 



1 

dissolution date of those marriages which were dissolved, and the cause, 

death or divorce. The time series under study are the marital status of each 

woman from age 15 to 45. The state space has four categories: single, 

married, widowed and divorced. Sorne other variables are also available for 

every individual, notably: the number of children and their dates of birth, 

social status of the successive husbands, place of residence, date of birth. 

They are used as supplementary variables in the analysis and proved 

powerful tools for the interpretation of the factors. 

Three different approaches have been used in the calculations and the 

three results are very similar [for a complete report, see Deville (1982)]. The 

main results are summarized in figs. 2 and 3. Only those given by the first 

approach (six intervals of five years) have been plotted. Fig. 2 presents the 

working variables of the analysis, i.e., the times spent in each state for every 

time interval. The coordinates are the value of the oc1-vectors for the first two 

factors. Straight lines connect points representing the same state at successive 

intervals. Fig. 3 shows passive variables in the same plane but with a larger 

scale. 

The horizontal axis draws apart women with several divorces from women 

who where widowed more than once. lt appears also to be related to time. 

Women born before 1900 are associated with widowhood, women born after 

1925 with divorce. This is consistent with the decrease of mortality and the 
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rise of divorce during the 20th century. Women who married (at least once) a 
white-collar worker divorce more often than women who married only 
workers or men having an independent occupation (farmers of merchants). 
The marriages of women with four marriages end more frequently by divorce 

than by death of husband. 

The vertical axis is related with the age at the time of the first marriage. 
The 'single' state contributes for 75% in the determination of this factor. 
However, it opposes much more women without children (about 15% of the 

sample) - who generally got married late - to women having one or 
several children. Workers' wives are here associated with the absence of 
children, although they are on the average more fertile than other women. 
The meaning of this association could be the following: in Iower social 
classes, a divorced or widowed woman with a child bas Jess chance to get 
remarried than a woman in the same situation belonging to the upper 
classes. 

The third factor also allows a clear interpretation. lt is determined 
essentially by events occurring between the ages of 35 and 45. It splits the 
sample in two major groups. In the first one, there is a stable third marriage, 
very often with children. Women belonging to the second one continue to 
have a very eventful life, even after 35 years. 



 

5. Conclusion

Unlike other methods, correspondence analysis is not concerned with

model building and is not oriented towards prediction. Its aim is essentially 

exploratory and consists in clarifying the essential structures of a large data 

set and, if these exist, the features that differentiate several subpopulations. 

Correspondence analysis may be applied at a very large scale to real data 

thanks to efficient software [such as SPAD of Lebart and Morineau (1982)] 

which is able to process arrays of very large dimension (several hundreds of 

variables and thousands of individuals). 
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