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Abstract—This paper proposes a two-step interval estimation
method for discrete-time switched linear systems with unknown
but bounded uncertainties. Based on the ellipsoidal analysis, the
proposed estimator provides upper and lower bounds of the
system state with high computational analysis. The size of the
obtained ellipsoids is minimized using the trace criterion. The
idea of introducing an L∞ performance is also employed in
order to improve the estimation accuracy. Its design conditions
are given in terms of Linear Matrix Inequalities (LMIs). Finally,
a numerical example emphasizes the effectiveness of the contri-
bution.

Index Terms—Interval estimation, ellipsoid, switched linear
systems, L∞ performance.

I. INTRODUCTION

Over the past decades, state estimation has become one
of the critical problems in control theory. For the targets of
monitoring, identification and fault detection, the knowledge
of all system state variables is a must. However in most of the
cases, they may not be completely measurable and moreover,
the sensors can be limited in number or provide inaccurate
measurements with low reliability. In this framework, observer
algorithms were proposed in order to overcome this limitation.
They have acquired the growing attention due to their ability
to estimate the system state from the input-output process.

Non-exhaustive literature review. As well-known in the
literature, dynamical processes are typically affected by
known or unknown uncertainties (e.g., noises, disturbances
etc.) which are usually assumed to be either stochastic or
deterministic. Since 1960s, several results are devoted to the
stochastic framework [1], [2]. It concerns the cases of known
disturbances and measurement noises that are distinguished
by an explicit distribution (generally Gaussian). Nevertheless,
it is difficult to check this assumption in real applications. A
general and practical assumption is that the uncertainties are
unknown but bounded by known bounds [3], [4]. So far, the
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state estimation issues under this context are fertile ground
for studies. Several set-membership estimation techniques
which are based for instance on zonotope [5]–[7] or ellipsoid
[8], [9] are proposed in order to compute feasible sets that
contain all the possible states.

Lately, interval observers have become more popular due to
their computational efficiency and their simple principle [10]–
[13]. In the literature, it has been shown that the cooperativity
assumption is the main design limitation. Therefore, a change
of coordinates has been proposed to relax this restrictive
requirement [12], [14]. However, state transformation-based
design may also cause conservatisms as pointed out in [15]:
it is impossible to synthesize simultaneously the framer gain
and the coordinate transformation matrix satisfying in the
same time the cooperativity constraint and the estimation
accuracy. In that context, some recent studies exhibit two-
step methods [16]–[18]. The idea in [16], [17] is to combine
the observer design with zonotopic techniques, which helps
to overcome the cooperative constraint frequently employed
in design of interval observers and to improve the accuracy
performance of interval estimation. However, the drawback
of the zonotope-based estimation is the trade-off between
accuracy and computation burdens. During the propagation
process, the dimensions of zonotopes grow linearly which
increases the computational burden. To handle this limitation,
an alternative approach which also provides good perfor-
mances and relaxes the computational complexity is based
on the ellipsoidal representation [19]–[21]. On the one hand,
this approach allows getting state bounds in a deterministic
and guaranteed way. On the other hand, the simplicity of
formulation and its geometry form can be used in order to
obtain a more implementable solution. Thus, a good trade-off
between computation complexity and estimation accuracy is
ensured.

Additionally, switched systems have witnessed an expand-
ing interest [22], [23] due to their specificity to represent
several real-life applications such as automatic control sys-
tems, network control processes, power electronics processes,
and flight control systems [24], [25]. Switched systems have
emerged as a particular class of hybrid dynamical systems
(HDS). They are composed of a number of continuous or
discrete time subsystems called also modes and a switching
rule that allows only one mode to be active at each time
[25]. Naturally, state interval estimation of such systems is
important and has attracted attention [26], [27]. To the best



of the authors knowledge, two-step interval estimation based
on the ellipsoidal approximation for discrete-time switched
linear systems has not been investigated. Moreover, notice that
observer gains decide also the tightness of the interval width
and as proved in [28], the practical signals are not usually
energy-bounded but have peak bounds values. Therefore, as a
robustness performance, we consider the L∞ norm to compute
these observer gains, which is naturally more consistent with
interval analysis since it minimizes the peak-to-peak gain.

Contribution. Based on the arguments given above, this
paper proposes a novel state interval estimation method
for discrete-time linear switched systems with unknown but
bounded uncertainties. The observer design is combined with
an ellipsoidal formulation. More precisely, first an L∞ ob-
server is used to reduce the influence of unknown uncertain-
ties. The observer design conditions can be converted into
linear matrix inequalities (LMIs). Next, an ellipsoidal set is
computed for the estimation error and generates two bounds
for the state. The proposed method provides a systematic way
to improve the accuracy of interval estimation. Compared to
[29], the contributions and the main difference of this paper
is that the changes of coordinates required to ensure the
non-negativity of the estimation errors are not needed in the
proposed approach. Therefore, the estimation pessimism can
be reduced.

The present paper is organized as follows. Some preliminar-
ies are given in Section II. The problem statement is illustrated
in Section III. The main results are proved and scheduled
in Section IV and V. A numerical example of the proposed
observer and some comparison simulations are presented in
section VI. Finally, a conclusion is presented in section VII.

II. PRELIMINARIES

Notations
• R and N represent the real and natural number sets,

respectively.
• 1, N is the sequence of integers 1, ..., N .
• The identity matrix of any dimension n is denoted by In.
• For xa = [xa,1, ..., xa,n]> ∈ Rn and xb =

[xb,1, ..., xb,n]> ∈ Rn, xa ≤ xb if and only if, for all
i ∈ {1, ..., n}, xa,i ≤ xb,i.

• The relation M � 0 (M ≺ 0 ) means that the matrix
M ∈ Rn×n is positive definite (negative definite).

• For a signal sk ∈ Rn, the L∞ norm is given by ‖s‖∞ =
supk>0 ‖sk‖, where ‖sk‖ =

√
skT sk.

Definition 1 ( [9]). A non-degenerate ellipsoid set ξ(xc, X) ⊂
Rn is defined by

ξ(xc, X) ≡
{
x : (x− xc)TX−1(x− xc) ≤ 1

}
, (1)

where xc ∈ Rn and X = XT � 0 are its center and its shape
matrix, respectively. �

Definition 2 ( [3]). Let us consider a convex set χ ⊂ Rn,
its support function in terms of a vector ` ∈ Rn is given as
follows

ϕχ(`) = max
s∈χ

`T s. (2)

�

Property 1 ( [9]). The affine transformation of an ellipsoid
y = Ax+ a is given as

Aξ(xc, X)⊕ a = ξ(Axc + a,AXAT ), (3)

where A ∈ Rn×n and a ∈ Rn. �

Property 2 ( [9]). The Minkowski sum of two ellipsoids
ξ1(xc1, X1) and ξ2(xc2, X2) satisfies

ξ1(xc1, X1)⊕ ξ2(xc2, X2) ⊆ ξ3(xc3, X3), (4)

where xc3 = xc1 + xc2, X3 = ϕ−11 X1 + ϕ−12 X2, such that
ϕ1 + ϕ2 = 1, ϕ1 > 0 and ϕ2 > 0. �

Lemma 1 ( [3]). Given a non-degenerate ellipsoid ξ(xc, X)
defined as (1), its support function in terms of ` ∈ Rn is

ϕξ(xc,X)(`) = `Txc +
√
`TX`. (5)

�

III. PROBLEM STATEMENT

In the present paper we consider the following discrete-time
switched linear system{

xk+1 = Aqxk +Bquk + Fqwk
yk = Cqxk

, ∀q ∈ 1, N, N ∈ N,
(6)

where x ∈ Rn, u ∈ Rn, y ∈ Rp, and w ∈ Rn are the state,
the input, the output and the unknown disturbance vectors,
respectively. The invariant-time matrices Aq , Bq , Fq and
Cq have appropriated dimensions. N defines the number of
subsystems and q is the index of the active mode at each time
k. For the rest of paper, we need the following assumptions.

Assumption 1. The pair (Aq, Cq) is detectable.
Assumption 2. The disturbance wk is bounded and belongs

into an appropriate ellipsoidal set defined as follows

ξ(0,W ) ≡
{
w : wTW−1w ≤ 1

}
, (7)

where W is a positive definite matrix which represents the
shape of this ellipsoid.

Assumption 3. The initial system state is supposed to be
unknown but included in the following ellipsoid set

ξ(xc0, X0) ≡
{
x : (x− xc0)

T
X−10 (x− xc0) ≤ 1

}
. (8)

Where X0 = XT
0 � 0.

In the sequel, the aim is to design a two-step interval estima-
tion through the combination of an L∞ observer performance
with the ellipsoidal approach to provide two signals xk and
xk such that

xk < xk < xk,∀k > 0. (9)

The L∞ formalism is used to attenuate the system disturbances
effects and to improve the estimation accuracy.



IV. L∞ FORMALISM FOR SWITCHED LINEAR SYSTEMS

Consider the following Luenberger observer structure for
the switched system (6)

x̂k+1 = (Aq − LqCq)x̂k +Bquk + Lqyk. (10)

Where x̂k ∈ Rn is the state estimation vector and Lq ∈ Rn×n
is the observer gain matrix.

At a given instant k, the estimation error is defined by

ek = xk − x̂k. (11)

Thus,
ek+1 = Aqek + Fqwk, (12)

where Aq = (Aq − LqCq).
The aim is to design the observer (10) satisfying
• The nominal system of (12) is stable.
• ek should satisfy the following L∞ performance, i.e.,

‖ek‖ ≤
√
γw(λ(1− λ)kV0 + γww̃2), (13)

where P � 0 ∈ Rn×n, V0 = eT0 Pe0, γw > 0, and
0 < λ < 1.

The following theorem is proposed to design the gain matrix
in observer (10).

Theorem 1. Let Assumptions 1, 2 and 3 hold and given
parameters γw > 0, and 0 < λ < 1. If there exist positive
definite matrices P ∈ Rn×n, Uq ∈ Rn×p, and a constant
σ > 0, ∀q ∈ 1, N such that (λ− 1)P 0 (PAq −WqCq)

T

0 −σIn (PFq)
T

(PAq −WqCq) (PFq) −P

 ≺ 0,

(14) λP 0 In
0 (γw − σ)In 0
In 0 γwIn

 � 0. (15)

Then, the dynamics (12) are input-to-state stable and the
observer gain is chosen as Lq = P−1Wq . �

Remark 1. Note that the parameter γw can be optimized.

Proof 1. Let us consider the following Lyapunov function for
(12)

Vk = eTk Pek, P � 0,

that can be shown to satisfy

4VK = Vk+1 − Vk < 0,

when wk = 0. Indeed, from (12) we have

eTk+1Pek+1 − eTk Pek = (Aqek + Fqwk)TP (Aqek + Fqwk)

− eTk Pek.

Thus,

4Vk =

[
ek
wk

]T [
Aq

T
PAq − P Aq

T
PFq

FTq PAq FTq PFq

] [
ek
wk

]
.

Now, bearing in mind that when (14) is accomplished, by
substituting Wq = PLq and according to Aq = (Aq−LqCq),
the inequality (14) can be rewritten as follows (λ− 1)P 0 (PAq)

T

0 −σIn (PFq)
T

(PAq) (PFq) −P

 ≺ 0. (16)

Now, let us consider the following variable

Ψ =

[
InP 0 A

T

q

0 In FTq

]
. (17)

Then, by pre- and post-multiplying (16) with (17) and its
transpose, respectively, we obtain[

(λ− 1)P +A
T

q PAq A
T

q PFq
FTq PAq σIn + FTq PFq

]
≺ 0, (18)

which is equivalent to[
Aq

T
PAq − P Aq

T
PFq

FTq PAq FTq PFq

]
+

[
λP 0
0 −σIn

]
≺ 0. (19)

Pre- and post-multiplying (19) with
[
eTk wTk

]
and its

transpose, respectively, we acquire

4Vk + λVk − σwTk wk ≺ 0. (20)

When wk = 0, the inequality (20) implies that

4Vk = Vk+1 − Vk < −λVk < 0. (21)

Thus, the error dynamic (12) is input-to state stable.
Next, it remains only to verify that

‖ek‖ ≤
√
γw(λ(1− λ)kV0 + γww̃2). (22)

From inequality (20), we have

Vk+1 < (1− λ)Vk + σw̃2, (23)

which implies

Vk+1 <(1− λ)kV0 + σ

k−1∑
τ=0

(1− λ)τ w̃2

≤(1− λ)kV0 + σ
1− λk

λ
w̃2

≤(1− λ)kV0 + σ
w̃2

λ
. (24)

Using the Schur complement, the inequality (15) is equivalent
to [

λP 0
0 (γw − σ)In

]
− 1

γw

[
In
0

] [
In 0

]
� 0. (25)

Now, by pre-and post-multiplying (25) with
[
eTk wTk

]
and

its transpose, respectively, we obtain

eTk ek ≤ γw(λVk + (γw − σ)w̃2). (26)

Then by setting (24) into (27), we have

eTk ek ≤γw(λ((1− λ)kV0 + σ
w̃2

λ
+ (γw − σ)w̃2)

≤γw(λ(1− λ)kV0 + γww̃
2). (27)

Then, the condition in (22) is satisfied. �



V. ELLIPSOIDAL STATE BOUNDING PROCESS FOR
DISCRETE-TIME SWITCHED LINEAR SYSTEM

In this section, the aim is to find a feasible set ξ(xck, Xk)
which contains the system state xk, in order to derive the two
signals xk and xk satisfying (9). Theorems 2 and 3 are given
for such purpose.

Theorem 2. Consider the observer (10) for the system (6)
and assume that Assumption 3 is satisfied, with xc0 = x̂0. The
state xk belongs into a feasible ellipsoidal set ξ(x̂k, Xk), such
that

Xk+1(δ) = (1 +
1

δ
)AqXkAq

T
+ (1 + δ)FqWkFq

T , (28)

with

δ =

√√√√ trace(AqXkA
T

q )

trace(FqWFTq )
. (29)

Proof. From (11) and by considering xc0 = x̂0, we verify that

e0 ∈ ξ(xc0, X0)⊕ (−x̂0) = ξ(0, X0). (30)

Based on Assumption 2 and (30), we have ek ∈ ξ(0, Xk).
Thus the system state satisfies

xk ∈ ξ(0, Xk)⊕ (x̂k) = ξ(x̂k, Xk). (31)

Now, according to the previous assumptions, the observer
system (10) and using the ellipsoidal analysis procedure, we
have

ek+1 ∈ Aqξ(0, Xk)⊕ Fqξ(0,Wk) = ξ(0, Xk+1(δ)). (32)

Applying Property 1, we obtain

ek+1 ∈ ξ(0, AqXkAq
T

)⊕ ξ(0, FqWkF
T
q ). (33)

Thus
ek+1 ∈ ξ(0, Xk+1(δ)), (34)

which yields

xk+1 = x̂k+1 + ek+1 ∈ ξ(x̂k+1, Xk+1(δ)). (35)

Therefore, we conclude that

xk ∈ ξ(x̂k, Xk), ∀k ≥ 0. (36)

Now, according to the Property 2, the shape matrix Xk+1(δ)
is defined as follows

Xk+1(δ) = (1 +
1

δ
)AqXkAq

T
+ (1 + δ)FqWkFq

T , (37)

where δ minimizes the size of the feasible ellipsoidal set at
time k + 1 using the trace criterion.

Remark 2. Note that the sum of two ellipsoids is not
an ellipsoid and the outer approximation is optimized in the
following by using the trace criterion.

Trace criterion
Let us consider the following trace function

trk = trace(Xk+1) (38)

= trace((1 +
1

δ
)AqXkAq

T
+ (1 + δ)FqWkFq

T ).

Due to the convexity of the trace function [9, Lemma 3.1]
with respect to δ, the minimum value of δ based on the trace
criterion is given by

∂trk
∂δ

= −δ−2trace(AqXkAq
T

) + trace(FqWFTq ) (39)

= 0.

Hence, an explicit solution of δ can be deduced as

δ =

√√√√ trace(AqXkA
T

q )

trace(FqWFTq )
. (40)

Now, after obtaining the feasible set ξ(x̂k, Xk), the signals
xk and xk are computed using the following theorem.

Theorem 3. For the system (6), the two bounds xk and xk
satisfying (9) can be obtained as follows{

xk(i) = x̂ck(i) + ek(i), i = 1..n
xk(i) = x̂ck(i) + ek(i), i = 1..n

(41)

where ek = −ek and

ek(i) =
√
Xk(i, i) (42)

Proof. From Theorem 3, we have verified that xk ∈
ξ(x̂k, Xk),∀k ≥ 0 and ek ∈ ξ(0, Xk). By defining `i ∈ Rn
as the vector with its i−th element equal to 1 and the others
to 0 and according to Lemma 1, we have

ϕξ(0,X)(`i) =
√
`Ti X`i =

√
`T (i)X`(i) (43)

=
√
X(i, i). (44)

According to Definition 2, we have

ϕξ(0,X)(`i) = max
ek∈ξ(0,X)

`Ti ek = ek(i). (45)

Thus, (46) and (43) imply that

ϕξ(0,X)(`i) =
√
X(i, i) = ek(i). (46)

Then, from Definition 2, we have ek(i) = `Ti ek ≤
ϕξk(0,Xk)(`i), ∀i = 1, n.
Thus, ek ≤ ek, then since ξk(0, Xk) is symmetric, involving
that −ek ∈ ξk(0, Xk). As well, from Definition 2, we obtain
−ek ≤ ek then ek ≥ −ek = ek. Therefore, we can conclude
that x̂k + ek ≤ xk ≤ x̂k + ek.

VI. SIMULATION RESULTS

This section presents some simulation results of the pro-
posed method. In order to substantiate the efficiency of the
suggested approach, the results of this paper are compared
with [29]. Let us consider the switched linear system (6) with
three modes (N = 3), where

A1 =

 0.53 0.01 0.12
0.32 −0.08 0.15
0.47 0.13 0.54

 ,

A2 =

 0.3 0.05 0.43
0.35 0.12 0.43
0.5 0.25 0.23

 , A3 =

 0.4 0.31 0.28
0.1 0.3 0.2
1 0.5 0.04

 ,



C1 =
(

0.4 1.2 0.5
)
, C2 =

(
0.71 0.81 0.6

)
,

C3 =
(

0.85 0.3 0.7
)
,

B1 =

 1.5
1
1

 , B2 =

 1
1

0.4

 , B3 =

 0.4
1
1

 ,

Fq = I3, ∀q ∈ 1, 3, wk = 0.1

 sin(0.5k)
cos(0.5k)
cos(0.5k)

 is the bounded

state disturbances with w̄ =

 0.1
0.1
0.1

 such that wTk wk ≤

w̄T w̄.
According to the proposed optimisation algorithm, we

choose λ = 0.2. It is worth noting that λ is a tuning parameter
which we employ heuristics to select. The feasible solutions
of the LMIs (14) and (15) are obtained as follows σ = 3.1886,
γw = 3.1886, and

L1 =

 0.2233
0.1064
0.4407

 , L2 =

 0.3635
0.4208
0.4646

 ,

L3 =

 0.4870
0.2598
0.7460

 .

The existence of such feasible solutions of (14) and (15)
implies that the error dynamic (12) is input-to-state stable and
ek satisfies the L∞ performance (13).

Now, applying the method proposed in [29, Theorem 3] to
the simulation system (6) yields

L1 =

 0.3387
0.2476
0.7304

 , L2 =

 0.4842
0.5236
0.4547

 ,

L3 =

 0.4782
0.2912
0.5695

 .

Note that the matrices Aq − LqCq are not nonnegative for
all q ∈ 1, 3. Then, according to the approach in [29],
changes of coordinates z = Rqx are required such that
Rq(Aq − LqCq)R

−1
q are nonnegative. The matrices Rq can

be computed as follows

R1 =

 −0.3931 0.0408 0.1720
−2.8860 7.4643 −1.2225
3.2791 −75051 2.0504

 ,

R2 =

 5.7701 −6.7259 0.6
−0.0653 −0.1854 0.0953
−5.7048 6.9113 0.3047

 ,

R3 =

 −3.8872 4.0362 0.4411
−3.5690 0.1117 1.6520
7.4562 −4.1479 −1.0931

 .

In the simulation, the initial state is x0 =
(

0 0 0
)T

,
the initial observer state x̂0 =

(
0.5 0.5 0.5

)T
. The

initial state ellipsoid set is defined by: its center c0 =

(0 0 0)T , and its shape matrix X0 = 10I3. The distur-
bances ellipsoid set is defined by its shape matrix W = 0.23 0.022 0.022

0.022 0.23 0.022
0.022 0.022 0.23

.
The switching signal, which governs the switching between

the subsystems, is plotted Figure 1. Figure 2 presents the state
x, the feasible ellipsoid set ξ(x̂k, Xk) for k = 0, k = 50,
the disturbance wk and the ellipsoid set uncertainties ξ(0,W ).
It shows that the proposed approach allows getting at each
instant a feasible set ξ(x̂k, Xk) containing the system state
xk. It is also worth noting that the disturbance wk belongs
into the ellipsoidal set uncertainties ξ(0,W ) so Assumption 2
is satisfied.

The simulation results of the proposed interval estimator
as well as the comparison with [29] for both coordinates are
illustrated in Figure 3 where solid lines refer to the system
state and the method in [29] while dashed lines refer to the
proposed approach in this paper. The approach proposed in
[29] suffers from using the change of coordinates which causes
pessimism while the two-step interval estimation proposed
in the present paper integrates robust observer design with
reachability analysis of the error dynamics and gets rid of
the cooperativity requirement. Therefore, the estimation pes-
simism can be reduced. This comparative analysis is illustrated
by Figure 3.

0 5 10 15 20 25 30 35 40 45 50

Time (Seconds)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

M
od

e

Fig. 1. Switching signal.

Fig. 2. System state x, ellipsoid sets ξ(x̂k, Xk) at instant k = 0, k = 50,
wk and ξ(0,W ).

Figure 3 shows that despite uncertainties, for both above-
mentioned approaches, the system state is always framed by
the upper and the lower estimates which point out that the



relation xk ≤ xk ≤ xk is satisfied during the whole estimation
process. Furthermore, with the same switched system, accord-
ing to Figure 3, we observe that the interval width obtained
by our approach is more narrow than the one proposed by
[29]. The tighter the interval width is, the more the estimated
bounds xk and xk approach to the real system state xk. Thus,
the estimation accuracy is improved.
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Fig. 3. Comparative simulation with [29].

VII. CONCLUSION

State estimation of discrete-time switched linear system
subject to unknown but bounded uncertainties has been con-
sidered in this paper. A new methodology to design a two-
step interval estimation based on the ellipsoidal approximation
which allows one to derive two signals xk and xk such that
xk < xk < xk for all k ≥ 0 has been investigated. For the
reason of estimation performance, the present approach has
also integrated an L∞ formalism to improve the estimation
accuracy by attenuating the system disturbances effects. A
comparative simulation shows the efficiency of the proposed
contribution. For a further work, this methodology will be ex-
tended to deal with switched systems with unknown switching
rules.
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