R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang et al., Deep learning and its applications to machine health monitoring, Mechanical Systems and Signal Processing, vol.115, pp.213-237, 2019.

Y. Lei, N. Li, L. Guo, N. Li, T. Yan et al., Machinery health prognostics: A systematic review from data acquisition to rul prediction, Mechanical Systems and Signal Processing, vol.104, pp.799-834, 2018.

J. Zhang, P. Wang, R. Yan, and R. X. Gao, Long shortterm memory for machine remaining life prediction, Journal of Manufacturing Systems, vol.48, pp.78-86, 2018.

H. Liu, J. Zhou, Y. Xu, Y. Zheng, X. Peng et al., Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks, Neurocomputing, vol.315, pp.412-424, 2018.

S. Lee, M. Kwak, K. Tsui, and S. B. Kim, Process monitoring using variational autoencoder for high-dimensional nonlinear processes, Engineering Applications of Artificial Intelligence, vol.83, pp.13-27, 2019.

K. Xu, D. H. Park, C. Yi, and C. A. Sutton, Interpreting deep classifier by visual distillation of dark knowledge, CoRR, 2018.

J. Wang, L. Gou, W. Zhang, H. Yang, and H. Shen, Deepvid: Deep visual interpretation and diagnosis for image classifiers via knowledge distillation, IEEE Transactions on Visualization and Computer Graphics, vol.25, issue.6, pp.2168-2180, 2019.

R. Zemouri, M. Lévesque, N. Amyot, C. Hudon, O. Kokoko et al., Deep convolutional variational autoencoder as a 2d-visualization tool for partial discharge source classification in hydrogenerators, IEEE Access, vol.8, pp.5438-5454, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02462252

S. Wold, K. Esbensen, and P. Geladi, Principal component analysis, proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists, vol.2, pp.37-52, 1987.

L. Van-der-maaten and G. Hinton, Visualizing data using t-sne, Journal of Machine Learning Research, vol.9, issue.11, pp.2579-2605, 2008.

D. Kingma, Variational inference & deep learning: A new synthesis, Faculty of Science (FNWI), Informatics Institute (IVI), 2017.

G. S. Martin, E. L. Droguett, V. Meruane, and M. Das-chagas-moura, Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis, Structural Health Monitoring, vol.0, issue.0, p.1475921718788299, 2018.


S. Khan and T. Yairi, A review on the application of deep learning in system health management, Mechanical Systems and Signal Processing, vol.107, pp.241-265, 2018.

M. Lévesque, N. Amyot, C. Hudon, M. Bélec, and O. Blancke, Improvement of a hydrogenerator prognostic model by using partial discharge measurement analysis, Annual Conference of the Prognostics and Health Management Society, vol.8, p.7, 2017.

Y. Luo, Z. Li, and H. Wang, A review of online partial discharge measurement of large generators, Energies, vol.10, issue.11, 2017.

C. Hudon and M. Belec, Partial discharge signal interpretation for generator diagnostics, IEEE Transactions on Dielectrics and Electrical Insulation, vol.12, issue.2, pp.297-319, 2005.