Skip to Main content Skip to Navigation
Conference papers

LSTM-based radiography for anomaly detection in softwarized infrastructures

Alessio Diamanti 1, 2 José Manuel Sanchez Vilchez 1 Stefano Secci 2
2 CEDRIC - ROC - CEDRIC. Réseaux et Objets Connectés
CEDRIC - Centre d'études et de recherche en informatique et communications
Abstract : Legacy and novel network services are expected to be migrated and designed to be deployed in fully virtualized environments. Starting with 5G, NFV becomes a formally required brick in the specifications, for services integrated within the infrastructure provider networks. This evolution leads to deployment of virtual resources Virtual-Machine (VM)-based, container-based and/or server-less platforms, all calling for a deep virtualization of infrastructure components. Such a network softwarization also unleashes further logical network virtualization, easing multi-layered, multi-actor and multi-access services, so as to be able to fulfill high availability, security, privacy and resilience requirements. However, the derived increased components heterogeneity makes the detection and the characterization of anomalies difficult, hence the relationship between anomaly detection and corresponding reconfiguration of the NFV stack to mitigate anomalies. In this article we propose an unsupervised machine-learning data-driven approach based on Long-Short-Term-Memory (LSTM) autoencoders to detect and characterize anomalies in virtualized networking services. With a radiography visualization, this approach can spot and describe deviations from nominal parameter values of any virtualized network service by means of a lightweight and iterative mean-squared reconstruction error analysis of LSTM-based autoencoders. We implement and validate the proposed methodology through experimental tests on a vIMS proof-of-concept deployed using Kubernetes.
Document type :
Conference papers
Complete list of metadatas

Cited literature [41 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02917660
Contributor : Stefano Secci <>
Submitted on : Wednesday, August 19, 2020 - 4:16:14 PM
Last modification on : Monday, September 7, 2020 - 11:58:02 AM

File

_A_Machine_Learning_Methology_...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02917660, version 1

Collections

Citation

Alessio Diamanti, José Manuel Sanchez Vilchez, Stefano Secci. LSTM-based radiography for anomaly detection in softwarized infrastructures. International Teletraffic Congress, IEEE, Sep 2020, Osaka, Japan. ⟨hal-02917660⟩

Share

Metrics

Record views

67

Files downloads

56