J. Rubio-loyola, Scalable service deployment on software-defined networks, IEEE Communications Magazine, vol.49, pp.84-93, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00685240

M. Behringer, A reference model for autonomic networking. draft-ietf-anima-reference-model-07, IETF, 2018.

, ETSI GS ZSM 001 V1.1.1. Zero-touch network & service management requirements, 2019.

, Experiential networked intelligence; terminology for main concepts, 2019.

A. Boubendir, Network slice life-cycle management towards automation, IFIP/IEEE IM 2019

V. Q. Rodriguez, F. Guillemin, and A. Boubendir, 5G E2E network slicing management with ONAP, vol.2020

A. Boubendir, 5G edge resource federation: Dynamic and cross-domain network slice deployment, IEEE NetSoft, 2018.

E. Haleplidis, Software-defined networking: Layers and architecture terminology, RFC, vol.7426, 2015.

B. Yi, A comprehensive survey of network function virtualization, Computer Networks, vol.133, pp.212-262, 2018.

S. Secci, A. Diamanti, J. Sanchez, and . Vilchez, Security and performance comparison of ONOS and ODL controllers. Open Networking Foundation, Informational Report, 2019.

P. Cholda, A survey of resilience differentiation frameworks in communication networks, IEEE Communications Surveys Tutorials, vol.9, pp.32-55, 2007.

M. Ibrahim, A resiliency measure for communication networks, 2017.

I. B. Gertsbakh and Y. Shpungin, Network Reliability and Resilience, Briefs in Electrical and Computer Engineering, 2011.

Y. Fang, Resilience-based component importance measures for critical infrastructure network systems, IEEE Trans. on Reliability, vol.65, pp.502-512, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01436576

Y. Fang and E. Zio, An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards, European Journal of Operational Research, vol.276, pp.1119-1136, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02093096

J. P. Sterbenz, Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines, Computer Networks, vol.54, pp.1245-1265, 2010.

A. Jabbar, A Framework to Quantify Network Resilience and Survivability, 2010.

D. Zhang and J. P. Sterbenz, Measuring the resilience of mobile ad hoc networks with human walk patterns, 2015.

D. He, Software-defined-networking-enabled traffic anomaly detection and mitigation, IEEE Internet of Things Journal, vol.4, pp.1890-1898, 2017.

E. Eskin, Anomaly detection over noisy data using learned probability distributions, 2000.

D. Cotroneo, R. Natella, and S. Rosiello, A fault correlation approach to detect performance anomalies in virtual network function chains, 2017.

C. Zhou, Anomaly detection with robust deep autoencoders, ACM SIGKDD KDD, 2017.

R. J. Williams, Learning representations by backpropagating errors, Nature, vol.323, pp.533-536, 1986.

Y. Bengio, P. Simard, and P. Frasconi, Learning longterm dependencies with gradient descent is difficult, IEEE Trans. on Neural Networks, vol.15, pp.157-166, 1994.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, vol.9, pp.1735-1780, 1997.

P. Malhotra, Long short term memory networks for anomaly detection in time series, Presses universitaires de, 2015.

Z. Cui, Deep bidirectional and unidirectional lstm recurrent neural network for network-wide traffic speed prediction, 2018.

Z. Zhao, Lstm network: a deep learning approach for short-term traffic forecast, IET Intelligent Transport Systems, vol.11, pp.68-75, 2017.

X. Ma, Long short-term memory neural network for traffic speed prediction using remote microwave sensor data, Transportation Research Part C: Emerging Technologies, vol.54, pp.187-197, 2015.

A. Dalgkitsis, M. Louta, and G. Karetsos, Traffic forecasting in cellular networks using the lstm rnn, 2018.

I. , Improving traffic forecasting for 5g core network scalability: A machine learning approach, IEEE Network, vol.32, pp.42-49, 2018.

A. Imad, An efficient and lightweight load forecasting for proactive scaling in 5g mobile networks, 2018.

R. Mijumbi, Darn: Dynamic baselines for real-time network monitoring, IEEE NetSoft, 2018.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

, 3GPP release, vol.15

, Sipp


, Cadvisor

G. Hinton, Improving neural networks by preventing co-adaptation of feature detectors, 2012.

N. Srivastava, Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, vol.15, pp.1929-1958, 2014.

P. D. Melo, Surprising patterns for the call duration distribution of mobile phone users, 2010.