Using partial least squares regression for conjoint analysis - Archive ouverte HAL Access content directly
Journal Articles Statistica Applicata - Italian Journal of Applied Statistics Year : 2020

Using partial least squares regression for conjoint analysis

Abstract

After a presentation of the classical methodology of conjoint analysis we advocate the use of PLS regression instead of classical regression in order to obtain a better accuracy in the estimation of utilities. PLS regression provides also interesting graphical representations allowing quick and easy interpretation of the relations among preferences, attributes and profiles.
Fichier principal
Vignette du fichier
Russolillo-Saporta2020.pdf (631.36 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02941462 , version 1 (17-09-2020)

Identifiers

Cite

Giorgio Russolillo, Gilbert Saporta. Using partial least squares regression for conjoint analysis. Statistica Applicata - Italian Journal of Applied Statistics, 2020, Conjoint Analysis and Decision Making, 32, pp.67-84. ⟨10.26398/IJAS.0032-005⟩. ⟨hal-02941462⟩

Collections

CNAM CEDRIC-CNAM
103 View
599 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More