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ON THE CONVERGENCE TO EQUILIBRIA OF A SEQUENCE

DEFINED BY AN IMPLICIT SCHEME

THIERRY HORSIN AND MOHAMED ALI JENDOUBI

Abstract. We present numerical implicit scheme based on a geometric ap-
proach to the study of the convergence of solutions of gradient-like systems
given in [2]. Depending on the globality of the induced metric, we can prove
the convergence of these algorithms.

Dedicated to the memory of Ezzeddine ZAHROUNI

1. Notation

For a riemannian manifold (M, g) of dimension N we denote 〈·, ·〉g the scalar
product de�ned on each tangent space. The induced norm is denoted ‖ · ‖g (or ‖ · ‖
when there is no risk of confusion ) For a local system of coordinates on M , gij will
denote the coe�cient of the matrix de�ning the scalar product above.

Let us recall that a C1 curve x : [0, 1] → M is called a geodesic between x(0)
and x(1) i� it is a critical point of the functional

L(γ) =

∫ 1

0

||γ′(t)||gdt

restricted to the C1-curves γ : [0, 1]→M such that γ(0) = x(0) and γ(1) = x(1).
For a di�erentiable function f : M → R and p ∈M we denote ∇gf(p) the unique

element of the tangent space TpM to M at p such that

∀u ∈ TpM, 〈∇gf(p), u〉g = df(p).u

2. A implicit numerical scheme and main result of the paper

Let us consider (M, g) a complete connected non compact riemaniann manifold
and E a smooth real function. Associated to E , it is quite natural to consider the
following gradient system

(1) Ẋ(t) +∇gE(X(t)) = 0.

In the paper [11] the authors Merlet & Pierre consider the situation when (M, g)
is the standard RN with its natural euclidian structure and prove the convergence
of a sequence de�ned by an implicit scheme associated to (1). It is quite natural
to extend the scheme there introduced to the case of more general manifolds. Such
insights were initially considered in [12] provided (M, g) is a submanifold of RN .
However the speci�c case of the backward Euler scheme was not considered in this
paper under the intrinsic point of view, i.e. the backward scheme is constructed
ex post in [12], considering the embedded situation. Here we try to focus on the
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intrinsic geometry given by g even if we will use the existence of isometric embed-
dings in some euclidean space. Of course comparing the backward algorithm given
in [12] and the scheme constructed in the present paper is certainly of interest but
we have not considered it yet for the moment being.

We will assume in this section that M is complete, i.e. for any pair of distinct
points ofM there exists a minimizing geodesic between them. Without loss of much
generality, according to Nash's theorem (see [6] and [13]) we can always assume that
M is isometrically embedded in RP for a large enough P . The induced distance on
M will be denoted by d.

For some δt > 0, we consider the following sequence : Assume that X0, .., Xn

are constructed, we consider

(2) Xn+1 ∈ arg min
d(X,Xn)2

2δt
+ E(X).

The existence and uniqueness of Xn+1 depends on di�erent hypothesis. A natural
assumption is that E is coercive and semi-convex. From now on, we assume the
existence and uniqueness of the sequence (Xn) .

De�nition 2.1. Provided that for each n, Xn is uniquely de�ned, the sequence
(Xn) is the implicit Euler scheme associated to (1), for the given time step δt.

The convergence of the solutions of (1) has been extensively studied either in
�nite or in�nite dimensions. In the situation when E is analytic the convergence
was �rstly studied by S. Lojasiewicz in [9, 10] (see also [7, 5])

A major su�cient assumption for proving the convergence is the fact that E
satis�es the so-called Lojasiewicz's inequality at critical points:

∀p ∈M, ∇gE(p) = 0⇒(
∃θ ∈ (0,

1

2
], ∃cp > 0, ∃σp > 0, ∀q ∈M, d(p, q) < σp

⇒ ‖∇gE(q)‖ ≥ cp|E(p)− E(q)|1−θ
)(3)

In the following section we will prove the following theorem, main result of this
paper.

Theorem 2.2. Assume that E is coercive and semi-convex and satis�es the Lojasie-
wicz's inequality then the sequence (Xn) converges to a critical point of E.

As we said, the convergence of the sequence de�ned by discretized schemes as-
sociated to dynamical systems has been recently studied. The pioneering work in
that direction is given in [1]. The case of implicit scheme was considered quite
simultaneously in [11] and [3].

In order to deal with this result, it is required to get some informations from the
Euler-Lagrange equation satis�ed by Xn+1.

The computation is similar to the one made in order to derive the geodesic
equations. We closely follow it (see for example [8]). In order to do so, let

φn : [0, 1]2 →M
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be a C2 map such that

φn(., 0) : [0, 1]→M is a constant speed geodesic from Xn to Xn+1

φn(0, s) = Xn, ∀s ∈ [0, 1].

For any s ∈ [0, 1] we have

d(Xn, φ(1, s)) =

∫ 1

0

∑
i,j

gi,j(φ(t, s))
∂φi
∂t

∂φj
∂t

1/2

dt

The derivative of s 7→ d(Xn, φ(1, s)) with respect to s is thus∫ 1

0

dt

2

∑
i,j

gi,j(φ(t, s))
∂φi
∂t

∂φj
∂t

1/2

∑
i,j

∑
k

∂gi,j
∂xk

(φ(t, s))
∂φk
∂s

∂φi
∂t

∂φj
∂t

+ 2
∑
i,j

gi,j(φ(t, s))
∂2φi
∂t∂s

∂φj
∂t

(4)

Now we take s = 0. Let us recall that, for s = 0, we have a constant speed
geodesic, thus we get∑

i,j

gi,j(φ(t, 0))
∂φi
∂t

∂φj
∂t

1/2

= d(Xn, Xn+1).

Thus, due to this and integrating by part in (4), we get

1

2d(Xn, Xn+1)

∫ 1

0

∑
i,j

∑
k

∂gi,j
∂xk

(φ(t, 0))
∂φk
∂s

∂φi
∂t

∂φj
∂t
− 2

∑
i,j

∂2φi
∂t2

∂φj
∂s

−2
∑
i,j

∑
k

∂gi,j
∂xk

(φ(t, 0))
∂φk
∂t

∂φi
∂s

∂φj
∂t

 dt(5)

+
1

d(Xn, X)

∑
i,j

gi,j(φ(t, 0))
∂φi
∂s

∂φj
∂t

.

Now using the fact that t 7→ φ(t, 0) is a geodesic, the integral term in (5) vanishes.
Thus we have

(6)
d

ds
(s 7→ d(Xn, φn(1, s)))s=0 =

1

d(Xn, X)

〈
∂φ

∂t
(0, 1),

∂φ

∂s
(0, 1)

〉
g

.

Finally, the in�nitesimal variation associated to (2) with respect to the variation
given by φn is given by

1

δt

〈
∂φn
∂t

(0, 1),
∂φn
∂s

(0, 1)

〉
+

〈
∇gE ,

∂φn
∂s

(0, 1)

〉
= 0.

The Euler-Lagrange equation associated to (2) is thus :

(7)

∂φn
∂t

(0, 1)

δt
+∇gE(Xn+1) = 0.
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Let us point out that this condition is natural. Indeed when M = RN with the
standard euclidean metric, the constant speed geodesic joining Xn to Xn+1 in a
time duration 1 is t 7→ Xn + t(Xn+1−Xn) which gives the standard Euler implicit
scheme associated to (1).

Let us give some estimates that will be useful in the sequel.
Since we can assume that M is isometrically embedded in RN we deduce that

there is a universal constant A such that

(8) A||Xn+1 −Xn|| ≤ d(Xn, Xn+1).

Since t 7→ φn(t, 0) is a constant speed geodesic joigning Xn to Xn+1 for t ∈ [0, 1]

we have for some universal constant B, according to (8) and ||∂φn
∂t

(1, 0)||g =

d(Xn, Xn+1),

(9) A||Xn+1 −Xn|| ≤ ||
∂φn
∂t

(1, 0)||g ≤ B||Xn+1 −Xn||.

Due to the left hand side of this estimate and by following the proof of the
Merlet & Pierre results of [11], we will show that the sequence (Xn) converges to
some critical point of E .

3. Proof of the main result

In this section we give the proof of our main result, namely theorem (2.2). Let
us note �rst that the semi-convexity and coercivity of E assumptions are just given
to ensure the existence and uniqueness of the sequence (Xn) given δt.

We now closely follow [11].
Let us note that since

Xn+1 = argmin
d(Xn, X)2

2δt
+ E(X),

we have

(10)
d(Xn, Xn+1)2

2δt
+ E(Xn+1) ≤ E(Xn).

The sequence (E(Xn))n∈RN is therefore non increasing, converges due to our
assumptions, and thus there exists a subsequence of (Xn) that converges to some
X∞. Note that we also have limn→∞ d(Xn, Xn+1) = 0. Note also that according
to (7), (9), (10) ∇E(X∞) = 0.

Due to the Lojasiewicz inequality (3), there exist ν ∈ (0, 1/2], σ > 0 and γ > 0
such that

(11) ∀X ∈M, d(X,X∞) < σ ⇒ |E(X)|1−ν ≤ ||∇E(X)||.

Let n such that d(Xn+1, X∞) < σ. Now, as in Merlet & Pierre [11], two situations
are to be treated.

Assume �rst that E(Xn+1) > 1
2E(Xn).

E(Xn)ν − E(Xn+1)ν =

∫ E(Xn)

E(Xn+1)

νxν−1dx

≥ 2ν−1νE(Xn+1)ν−1|E(Xn)− E(Xn+1)|.
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According to (10) and (9), we get, for C1 = A2

E(Xn)ν − E(Xn+1)ν ≥ C12ν−2 ||Xn+1 −Xn||2

δt(E(Xn+1)1−ν

≥ C12ν−2ν||Xn+1 −Xn||
||∇E(Xn+1)||g
E(Xn+1)1−ν

≥ C1
2ν−2ν

γ
||Xn+1 −Xn||,

by the Lojasiewicz' inequality (3) .
Assume now that E(Xn+1) ≤ 1

2E(Xn).

We have, for C2 = 1
A , that

||Xn+1 −Xn|| ≤ C2

√
2δt|E(Xn)− E(Xn+1)|1/2

≤ C2

√
2δt|E(Xn)|1/2

≤ C2(1− 1√
2

)−1
√

2δt(|E(Xn)|1/2 − |E(Xn+1)|1/2).

Thus in both cases, we get that for all n such that d(Xn+1, X∞) < σ, we have

||Xn+1 −Xn|| ≤
22−νγ

C1ν
(|E(Xn)|ν − |E(Xn+1)|ν)

+5C2

√
δt(|E(Xn)|1/2 − |E(Xn+1)|1/2).

Let Ē > 0 small enough such that

22−νγ

C1ν
Ēν + 5C2

√
δtĒ1/2 < σ/3.

Let n̄ large enough such that ||Xn−X∞|| < σ/3 and E(Xn) < Ē and N the largest
integer such that ||Xn −X∞|| < 2σ/3 for all n such that n̄ ≤ n ≤ N . Assume that
N is �nite. We have

||XN+1 −X∞|| ≤ ||XN −X∞||+ ||XN+1 −XN ||

≤ ||XN −X∞||+
√

2
δt
A2
E(Xn) < σ.

Thus we get

N∑
n=n̄

||Xn+1 −Xn|| ≤ C1
22−ν

ν
E(Xn̄)ν + 5C2

√
δtE(Xn̄)

1
2 ≤ σ

3
.

This implies

||XN+1 −X∞|| ≤ ||Xn̄ −X∞||+
σ

3
< 2

σ

3
,

which is a contradiction if N is �nite.
As a consequence the sequence (Xn) converges which ends the proof of the main

result.
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4. Some generalizations and partial extensions

In the work by Chill & al [4] , the equation (1) is also considered, as well as the
so-called quasi-gradient system on RN

(12) ẍ+ ẋ+∇F(x) = 0,

as a particular case of a more general system on RM

(13) ẋ+ F (x) = 0.

In [2], it is shown that if there exists a continuously di�erentiable, strict Lyapunov
function E for (13), then there exists a riemannian metric g on the open set M =
{x ∈ RM , F (u) 6= 0} such that F = ∇gE .

We will here assume the existence of this function E .
Some fundamental properties of the metric g are strongly related to the so-called

compatibility condition (C) and angle condition (AC).
Let us recall the following de�nitions. The �rst is given in [4] (see also [2]). This

angle condition (AC) has �rst appeared in [1].
We will say that E and F satis�es the angle condition (AC) i� there exists a > 0

such that

(14) 〈∇E , F 〉 ≥ a‖∇E‖‖F‖.
We will also need the following one, given in [2].
We will say that E and F satis�es the compatibility condition (C) i� there exist
c1, c2 > 0 such that

(15) c1‖∇E‖ ≤ ‖F‖ ≤ c2‖∇E‖.
The following result is proven in [2]

Theorem 4.1. The euclidean metric and the metric g are equivalent on M if and
only if E and F satisfy the conditions (AC) and (C).

Though this property has a very nice appearance, it is not clear that it can be
used according to the �rst section of the present paper. Indeed, in order to do so,
one has to check that this metric g can be extended or not to RM to a geodesic
convex metric. If so, the results of part (1) can be applied.

Otherwise the situation is not clear. In this case we modify the algortihm given
in section one the following way.

We will moreover assume that E is non-negative, that its in�mum is 0 and that
{x, F (x) = 0} is compact (for the initial topology). We choose R > 0 such that
{x, F (x) = 0} ⊂ Bo(0, R).

We take ε > 0 such that ε < m. Let Mε/2,2R be the manifold {x, ε/2 <
E(x), ‖x‖ < 2R} and let g be the metric constructed in [2]. By compactness, it
is standard there exists ρ > 0 such that for any x ∈ M2ε/3,3R/2, the geodesic ball
Bg(x, ρ) = expx(B(0, ρ)) is geodesic convex (see [14]).

We can moreover assume that ρ < 1 and, moreover, if x ∈Mε,R

(16) Bg(x, ρ) ∈M2ε/3,3R/2

We choose x0 ∈Mε,R and consider the following minimization problem:

(17) min E(x) +
d(x0, x)2

2δt
, x ∈ Bg(x0, ρ).
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By compactness of the ball, the existence of a minimizer is obvious. We denote x1

such a minimizer.
Assume that we have constructed x1, ..., xN . We have two possibilities.
Either xN ∈Mε,R so that we take

(18) xN+1 ∈ arg min
Bg(x0,ρ)

E(x) +
d(x0, x)2

2δt

or xN ∈M2ε/3,3R/2 \Mε,R .
We then go on by replacing ε by ε/2, and this de�nes the sequence.
Now let us study the convergence of this sequence.
Assume that for some ε > 0 we have

(19) ∀n ∈ N, xn ∈Mε,R.

Let nk an increasing injection of N such that (xnk
) converges and let l denotes

the limit. Let xnk
and xnk′ such that l ∈ Bg(xnk

, ρ/4) ∩ Bg(xnk′ , ρ/4). This is
impossible since this would imply

E(xnk
) < E(xnk′ ) < E(xnk

)

The same proof implies that either there exists a N such that E(xN ) = 0 or ∀ε > 0
there exists N such that ∀n > N

0 < E(xn) < ε.

Indeed, if there exists ε > 0 such that for any N , there is nN > N such that
xnN

∈Mε,R and we can apply our preceding argument. The only other possibilities
are that the sequence (xn) is stationnary from a certain rank.

This in fact does not imply the convergence of the sequence which is for the
moment being unknown to us.

Let us remark that if the metric g is globally de�ned, then the same argument
as the proof of the main theorem shows that the sequence converges if we moreover
assume (without loss of generality) that ρ is small enough in order to have for every
N

min
Sg(xN ,ρ)

E > 1

2
E(xn),

where Sg(xN , ρ) is the sphere Bg(xN , ρ) \ Bg(xN , ρ).
Indeed, in this case, ρ can be chosen globally on the set on the open set B(0, 2R)

and the same strategy applies as in the proof of the main theorem.
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