Comparing partitions of different units based on same questionnaire

Genane Youness¹ and Gilbert Saporta²

¹Department of statistics, ISAE, CNAM-Lebanon, CEDRIC/CNAM, BP 11-4661, Beirut, Lebanon, gyouness@cnam.fr

²Chaire de Statistique Appliquée- CEDRIC/CNAM, 292 Saint Martin roads, 75003 Paris, France, gilbert.saporta@cnam.fr

Outline

- Introduction
- Concept for comparing two partitions having the same variables.
- How to define the null Hypothesis: " the partitions are identical".
- Latent profile model.
- Association Indices: Rand, Kappa, Redundancy indices.
- projecting partition's Procedure.
- Algorithm for projecting partitions.
- Application on simulated and real data.
- Conclusion

Introduction

•Same individuals

•Different variables

•Différent individuals

•Same variables

•Same individuals

•Same variables

Comparing two partitions

- Two partitions of the same variables: two sets of individuals, same occasion... Are they significantly different?
- Compute an association measure *M* and its critical value.
- A probability distribution for *M* is found under the hypothesis of identical partitions?
- The H_0 is rejected as soon as M < critical value.

Concept for comparing two partitions

 H_0 : « Two partitions are identical » H_1 : « They are not identical »

How to define H₀: « Two partitions are identical »

- Two partitions are close to each other if observations come from the same underlying common partition P,
- The two observed partitions are noisy realisations of the common one.
- Model for a common partition: latent profil model or mixture of probability distributions.

Latent profile model

Particular mixture model based on hypothesis of locale independency conditioned by latent classes

$$f(\mathbf{x}) = \sum_{k} \pi_{k} \prod_{j} f_{k}(x_{j} / k)$$

Serve to generate partitions
 Used by Green et Krieger 1999.
 Observed variables are numeric and latent variables are qualitative. (Bartholomew and Knott 1999)

Association indices

Notations

- P_1 et P_2 partitions of the same individuals with *p* et *q* classes
- K₁, K₂ : disjunctives tables (n,p) et (n,q)k₁(i,P₁)=1 if i \in P₁; 0 otherwise

 $\begin{pmatrix} 1 & \text{if i and i' are in the same class of } P_k, \\ 0 & \text{otherwise} \end{pmatrix}$

$$C_1 = K_1 K_1' \quad C_2 = K_2 K_2'$$

Contingency table N (p,q) in term of n_{uv} N=K₁' K₂

Rand index

- Rand's raw index is the proportion of agreements
- Corrected rand index R_C (Hubert & Arabie 1985): with an hypothesis of random partitions (R_C could be <0)</p>
- Asymmetric Rand R_A (Chavent 2001):
 - P₁ is more 'refined' than P₂
 - measure the inclusion of P_1 in P_2

$$2\sum_{u}n_{uv}^{2} - \sum_{u}n_{u}^{2} - \sum_{v}n_{v}^{2} + n^{2}$$

$$R' = \frac{uv}{u^{2}} \frac{u}{u} \frac{v}{v}$$

$$R' = \frac{1}{n^{2}} \frac{1}{2} \sum_{u,v} \frac{1}{2} - \sum_{u,v} \frac{1}{2} \sum_{v} \frac{1}{2$$

 $n + \sum n_{uv} - \sum n_{u}^2$

Symposium of Mathmatical Sciences 16-17 jan 09-AUB

 $R_A(P_1, P_2) = -$

Kappa coefficient

(Cohen 1960), compute nominal scale agreement between two raters defined as "the proportion of agreement after chance agreement is removed from consideration".

$$c = \frac{n \sum_{i=1}^{k} n_{ii} - \sum_{i=1}^{k} n_{i.}n_{.i}}{n^{2} - \sum_{i=1}^{k} n_{i.}n_{.i}}$$

Condition for use:

Two partitions having the same number of clusters p=q=k.

Identify the classes from Kappa maximum because the labeling of clusters is totally arbitrary.

Redundancy index

RI (Stewart and Love 1968)

- $-W_{ij} = X_i X'_j$
- Is a weighted average of the RI(X_1, X_2)= squared multiple correlation between components of X_1 and X_2

$$\frac{\text{trace}(W_{12}W_{22}^{-1}W_{21})}{\text{trace}(W_{11})}$$

 If X₁, X₂ indicator variables,
 RI = τ_b (Goodman and Kruskal 1979)

$$\tau_{bP_2/P_1} = \frac{\sum_{u \in v} \frac{n_{uv}^2}{n.n_{u.}} - \sum_{v} \left(\frac{n_{.v}}{n}\right)^2}{1 - \sum_{v} \left(\frac{n_{.v}}{n}\right)^2}$$

Procedure of projecting a partition on another one

Projecting a partition upon a reference one consists in allocating the units of the second set in the clusters defined by the reference partition using some discriminant analysis technique

Algorithm for projecting partitions

- Generate the sizes $n_1, n_2, ..., n_k$ of the clusters according to a multinomial distribution M(n, $\pi_1, \pi_2, ..., \pi_k$).
- For each cluster, generate ni values from a random normal vector with p independent components. The first data set I₁ of n₁ units is obtained.
- The same independent normal variables are used to generate the second data set I_2 of n_2 units. The initial data $I=I_1 + I_2$. Obtain P_1 .
- Classifying I₂ into the clusters of P₁ by linear discriminant analysis to obtain P'₂.
- Computing association indices for P_2 and P'_2 of the same set I_2 .
- Randomly permuting the observations of I.
- Again N times to find the empirical sampling distribution of the association indices.

Simulation

Tableau 2. Les distributions par classe

Simulation (1)

Identical partitions with same number of clusters

	Mean	Error type	Lower Limit	Upper Limit
Rand	0.988367	0.00016306	1 0.98804	
RA	0.994158	0.00008495	0.99399	0.994325
Tb	0.970632	0.00040592	.9 0.9698	34 0.97143

Simulation (2)

Identical partitions with different number of clusters
 5 classes, N=500, P'2 (projection on P1) 5 clusters, P2 (k-means) 3 clusters.

- RI vary 0.79915 to 0.988053, E(RI)= 0.867616.
- RA vary from 0.95 to 0.99824, E(RA) =0.98129.

Real data (1)

Survey about the condition of life and the aspirations of French people (Lebart 1987).
Goal is to compare men's and women's partitions.

n=624, p=14, 500 times.

The upper 5% fractil under H0 is equal to 0.721 for Rand, 0.85 for RA and 0.35 for Tb

Real data (2)

- To compare men and women's partitions, sorting sex, dividing data according to sex.
- Women: Tb=0.185, Rand=0.6134. Men: Tb= 0.2582, Rand= 0.6466.

Men and women's partitions are not considered identical since the indices have values much lower to their critical values. Symposium of Mathematical Sciences 16-17 jan 09-AUB

Conclusion

Conclusion.

- Method of comparing partitions coming from two set of objects with same variables based on a projection of partitions, through supervised clustering method.
- Critical values for distribution of indices depending on the k, n and the separation of classes.
- Applications have proved the feasibility of our approach.

Further studies are needed:

- Find universal critical values.
- Look at the meaning of classes in terms of the variables (external and internal information).