Skip to Main content Skip to Navigation
Journal articles

Riemannian Formulation of Pontryagin’s Maximum Principle for the Optimal Control of Robotic Manipulators

Abstract : In this work, we consider robotic systems for which the mass tensor is identified to be the metric in a Riemannian manifold. Cost functional invariance is achieved by constructing it with the identified metric. Optimal control evolution is revealed in the form of a covariant second-order ordinary differential equation featuring the Riemann curvature tensor that constrains the control variable. In Pontryagin’s framework of the maximum principle, the cost functional has a direct impact on the system Hamiltonian. It is regarded as the performance index, and optimal control variables are affected by this fundamental choice. In the present context of cost functional invariance, we show that the adjoint variables are the first-order representation of the second-order control variable evolution equation. It is also shown that adding supplementary invariant terms to the cost functional does not modify the basic structure of the optimal control covariant evolution equation. Numerical trials show that the proposed invariant cost functionals, as compared to their non-invariant versions, lead to lower joint power consumption and narrower joint angular amplitudes during motion. With our formulation, the differential equations solver gains stability and operates dramatically faster when compared to examples where cost functional invariance is not considered.
Complete list of metadata
Contributor : Marie-Liesse Bertram Connect in order to contact the contributor
Submitted on : Thursday, April 28, 2022 - 9:40:29 AM
Last modification on : Wednesday, September 28, 2022 - 5:56:27 AM
Long-term archiving on: : Friday, July 29, 2022 - 6:13:37 PM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution 4.0 International License



Juan Antonio Rojas-Quintero, François Dubois, Hedy César Ramírez-De-Ávila. Riemannian Formulation of Pontryagin’s Maximum Principle for the Optimal Control of Robotic Manipulators. Mathematics , MDPI, 2022, 10 (7), pp.1117. ⟨10.3390/math10071117⟩. ⟨hal-03653746⟩



Record views


Files downloads