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Abstract 

 

Refractive index gas thermometry (RIGT) uses the dependence of the relative dielectric 

permittivity on the density of a noble gas (He), typically measured with a temperature-controlled 

resonator. On an isotherm, to a good approximation, the slope of the dielectric permittivity 

versus pressure gives the thermodynamic temperature T. To measure T with a low uncertainty, 

one must measure the absolute value of the pressure with a low uncertainty and know the 

compressibility of the resonator wall.  

 

This article shows how to use RIGT in a novel way between 5 K and 25 K. Instead of changing 

the pressure on an isotherm (J.W. Schmidt et al., Phys. Rev. Lett., 98, 254504 (2007)), a constant 

pressure of pure helium gas is maintained at multiple temperatures. After calibration of the 

resonator under vacuum at different temperatures, all thermometry is performed at a single 

pressure and referred to a fixed point of the International Temperature Scale of 1990 (ITS-90) 

(here the neon triple point at 24.5561 K). The quantity that yields the temperature is the ratio of 

the resonance frequencies of a microwave mode in the resonator measured at the fixed point and 

at the unknown temperature.  

 

This paper describes the theoretical model of Single-Pressure Refractive Index Gas 

Thermometry (SPRIGT) and analyses the shifts and broadenings due to non-ideal behaviour. The 

technique should enable a helium-based measurement of thermodynamic temperature with a 

resolution better than 25 μK and an uncertainty of around 250 µK. 

 

Keywords: Low temperature thermometry, helium gas, refractive index, microwave cavity.  
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1 Introduction 

 

Fundamental gas metrology, such as primary thermometry for determining the Boltzmann 

constant, requires that the physical property of the gas (e.g. acoustic velocity, microwave 

refractive index, optical Doppler width) can not only be measured precisely but also be well 

understood theoretically. One of the most commonly used gases is helium-4, and recent advances 

in the ab initio calculation of its properties have made possible new variations on existing 

techniques. In this article we propose a variation called Single-Pressure Refractive Index Gas 

Thermometry (SPRIGT), which is based on the temperature and pressure dependence of the 

refractive index of helium. In SPRIGT, one measures a temperature by comparing the refractive 

index of a gas at two temperatures, one of which is known (e.g. a fixed point of the ITS-90) and 

the other which is to be determined. With absolute primary thermometers such as an acoustic gas 

thermometer (AGT) [1] or a dielectric constant-pressure gas thermometer (DCGT) [2], 

measurements are usually performed at several different pressures and the pressure-independent 

contribution is obtained by extrapolation of a function to zero pressure. By using a ratio method 

with measurements made under vacuum and at only a single, constant pressure, one should be 

able to measure temperatures about 10 times more rapidly than with either AGT or DCGT. 

Moreover, by using a rotating piston gauge and computer-driven servo loop, one can maintain a 

constant pressure for several months, if need be without the drift that typically affects other 

pressure sensors. The use of variable pressure gas thermometry is specified by the ITS-90 

temperature scale between 5 K and 25 K but is rarely implemented due to its difficulty. We 

expect SPRIGT to be a welcome alternative due to its competitive accuracy and increased speed. 

 

We begin this paper by presenting the theory relating temperature and pressure to refractive 

index. In particular, we show that in the ratio of refractive indices measured at different 

temperatures, most temperature-independent correction terms cancel out. After this we suggest 
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how to determine this ratio experimentally, extract the value of the unknown temperature and 

estimate the associated uncertainty. We shall see the instrument is likely to have optimal 

performance in the range 5 K to 25 K. Finally, a brief experimental procedure is outlined, 

together with some precautions necessary for making measurements at the envisaged level of 

accuracy. 

 

2 Temperature and pressure dependence of the refractive index 

The well-known model described here [3] is included only for clarity. Though it is not shown 

explicitly, almost all the variables are temperature-dependent, and many are pressure-dependent 

too.  The refractive index n relates the speed of electromagnetic waves in a medium to the value 

in vacuo. The index is the square root of the product of the relative electrical permittivity r and 

the relative magnetic permeability µr: 

rrn  .        (1) 

 

The relative permittivity r is related to the gas density  via the Clausius-Mossotti equation:  
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where A, b and c are coefficients usually determined by experiment but which, in the case of 

helium, can be calculated more accurately from theory [4,5,6]. Because 
4
He is weakly 

diamagnetic, the value of µr differs slightly from unity and is obtained from the Clausius-

Mossotti equation for magnetic permeability: 
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Because the diamagnetism is so small, only a single density-dependent term is required for the 

accuracy sought here. 

 

Combining equations 1 to 3 we obtain  
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The molar density  depends on the pressure p and temperature T via the virial expansion  

 ...1 2 





CBRT

p
     (5) 

where R is the molar gas constant and B and C are the second and third virial coefficients. 

 

The refractive index given by equation 4 can be estimated numerically to the required accuracy 

for any temperature in the interval from 5 K to 25 K and at pressures below 100 kPa. Conversely, 

from a knowledge of n
2
 and p one can calculate the temperature T by successive iteration with a 

relative uncertainty of 10
-6

 in the same range.  For temperatures below 5 K, approaching the 

boiling point of liquid helium (4.2 K), effects such as pre-condensation and liquefaction mean 

that more and more virial coefficients are required to calculate the temperature to such a level of 

accuracy. Above 25 K frequency noise rises: it takes longer and longer to measure the resonance 

frequency to the required resolution so temperature drifts degrade the accuracy 

 

The number of terms in the expansion used to obtain T is chosen such that addition of the next 

order term modifies its value by less than 10
-6

 in relative terms at 100 kPa. The values of B(T) 

and C(T) and their uncertainty are taken from Shaul et al. [4], those of Aµ and A and their 

uncertainties from Bruch and Weinhold [5] and Łach et al. [6], and the values of b and c and 

their uncertainties from Rizzo et al. [7] and Gugan and Michel [8].  

 

3 Microwave measurement of the refractive index 

In the present case, we are interested in the refractive index of a gas in the microwave region. 

The resonant frequency of a gas-filled resonator depends not only on its dimensions but also on 

the refractive index of the gas; in one dimension, the optical length is given by the product of the 
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physical length L, and the refractive index n. Put another way, electromagnetic waves travel 

more slowly through a medium than in vacuum so the effective wavelength is modified. The 

refractive index of the vacuum is unity. The deviation from unity of the refractive index of a gas 

mixture is a function of its pressure, temperature and composition. Unlike in the optical domain 

where subtle lineshape effects must be taken into account [9], in the microwave region, the 

refractive index is essentially density dependent. As described by Schmidt et al. (2007) [3], one 

can obtain the refractive index of the gas in the cavity at any temperature and pressure by 

comparing the resonance frequency of an electromagnetic mode with the frequency of the same 

mode with the cavity under vacuum, provided the change of volume due to the compression of 

the structure due to the pressure is taken into account. (Here we suggest using as the resonator a 

quasi-sphere: an almost spherical tri-axial ellipsoid [10,11]). One measures at a fixed pressure 

the frequency fn of a given mode and corrects it by an amount fn for two different temperatures 

T and Tref. The ratio of the squares of the refractive indices at the two temperatures is related to 

the corrected frequencies via 
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where kT(T) and kT(Tref) are the isothermal compressibility of the resonator at T and Tref. The 

subscript pairs (T,0) and (Tref, 0) denote the temperatures T and Tref at zero pressure, i.e. vacuum. 

This ratio of the two indices, one measured at a reference temperature and the other at an 

unknown temperature, can be determined very accurately. This is because, when a ratio is used, 

an exact knowledge of the corrections fn is not needed; provided the corrections remain 
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constant with temperature they cancel out to a large extent. (This can be seen from a power series 

expansion of equation 6 and a consideration of the size of the remaining terms that are negligible 

at the level of uncertainty sought here). This means in particular that the duct and the antenna 

effects are absent from the ratio [10]. However, the frequencies do have to be corrected for the 

electrical skin depth of the electromagnetic wave, which modifies the effective radius of the 

resonator, since this effect varies with temperature. For the copper used in most resonators of the 

type suggested here (Cu A1), the effect at ambient temperature is related to the electrical 

conductivity (which itself is temperature dependent), but below 50 K the anomalous skin effect 

appears because the penetration depth for microwaves used here is a few times the crystal lattice 

size [12]. Here we discuss the case where the reference temperature is that of the triple point of 

neon (24.5561 K). The triple point of diatomic hydrogen at 13.81 K could be used as an 

alternative but its implementation is far more challenging than that of neon. 

 

In microwave resonance experiments, one usually studies both transverse electric (TE) and 

transverse magnetic (TM) modes since they have different sensitivities to surface effects [13]. 

The achievable fractional frequency resolution is proportional to the half-width gn of a given 

resonance, which is a measure of the losses in the resonator. In preliminary experiments we have 

measured the average half-width of the mode TM11 for a quasi-sphere with a diamond turned 

surface. (The resonance is split into three peaks due to the deliberate non-spherical shape). We 

emphasize that the same quasi-sphere has already been used in the work of Sutton et al. (2011) 

[14] but at a higher temperature (273.16 K). Figure 1 gives the evolution of the half-width gn as a 

function of temperature. One can see a decrease of the slope below 50 K due to the anomalous 

skin effect and the change in the conductivity of copper. The curve gets progressively flatter at 

lower temperatures and the change gn/fn, which can be measured, is expected to be less than 

10
-9

 per kelvin below 25 K.  
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A convenient way to perform experiments is to use a servo loop to lock the oscillator frequency 

to the maximum of a resonance. The frequency stability then depends on the shape and sharpness 

of the resonance, the signal-to-noise ratio (SNR), and the type of noise that predominates at the 

time scale under consideration. This issue has been studied for over 50 years [15] as it has a 

direct bearing upon the stability and ultimate accuracy of atomic clocks [16]. In the presence of 

white frequency noise, the frequency stability f of a source servo-locked to the centre frequency 

f of a resonance of quality factor Q is characterized by the normalized Allan variance  

  

  

 
 
 

 

 

 

 

   
 
 

 
    (7) 

where SNR denotes the signal-to-noise ratio for a measurement time . For a given resonator 

mode of frequency fn and half-width gn, the quality factor Q corresponds to the ratio (fn /2gn). The 

factor A is a dimensionless constant of order unity, and t is the integration time. By measuring 

for increasingly longer times, one can improve the frequency resolution of a measurement until 

other sources of noise (e.g. flicker) come into play and the Allan variance curve reaches a floor 

or begins to rise. A version of equation 7 can be found in Audoin and Guinot (1998) [16] for a 

sinusoidal response function in which the factor A = .  More generally, the value of the A 

depends on the slope of the resonance curve and is  4 for a Gaussian and  5 for a Lorentzian 

[17]. In the experiment proposed here with a Lorentzian lineshape, a signal-to-noise ratio of 1000 

can be obtained for a 2 s sampling time. The expected frequency resolution (f / f) in the region 

5 K to 25 K, where Q is around 160 000, will be 0.5×10
-9

 after 4 s. From 25 K up to 300 K, the 

Q of the resonance falls by a factor of four as the electrical resistivity rises, while all the other 

terms in equation (7) remain constant. In reality, it is essential to perform regular scans of the 

resonance line to check for any change in the width and shape. These take typically two minutes. 

 

The change of the resonator volume due to the gas pressure is taken into account by the 

isothermal compressibility term kT. Because equation 6 is a ratio, only its temperature 
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dependence has any effect. The recent work of Gaiser and Fellmuth (2016) [18] gives the 

temperature dependence of this variable, and the authors gave a conservative upper limit of 10% 

for the uncertainty in kT.     

  

There are two other issues related to the correct measurement of pressure because the pressure 

gauges are located outside the resonator at room temperature. The first is the thermomolecular 

effect. To minimize its impact, the tube connecting the resonator to the gas handling system is 

tapered, with the larger diameter at the room temperature end. In this way, at the fixed pressure 

to be used here (30 kPa) and at the lowest temperature (5 K) the molecular mean free path will 

always be less than the diameter of the tube, and the thermomolecular pressure shift less than 

0.001 Pa. The second effect is the hydrostatic head correction, which was investigated in 1989 by 

Astrov and colleagues (1989) [19], and later in great detail by the LNE-Cnam group in the 

context of a 
3
He - 

4
He vapour pressure thermometer [20].  

 

    

 

4 The propagated uncertainty 

Since it is not possible to obtain an analytical expression for the temperature as a function of 

parameters and calculate its partial derivatives, a numerical approach is used to estimate the 

propagated uncertainty in T from the uncertainty in each parameter. First T is obtained as a 

function of P, kT, fn (P), fn (0), Tref, B, C, A, Aµ and b. Then, for each variable X, the calculation 

is repeated with X replaced by X+X, where X is its standard uncertainty but with all other 

variables constant. The total uncertainty is then evaluated as the square root of the quadratic sum 

of the temperature shifts due to a change in each variable taken separately. The difference 

between T(X) and T(X+X) is taken for the estimation of the propagated uncertainty in the range 

5 K to 25 K. In this calculation, we have taken into account the resolution of the measurement in 

fn and P and the uncertainty due to the imperfect knowledge of P, Tref, B, C and b. Due to the use 
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of a ratio, variations of A and Aµ cancel out at the level of 10
-12

. The temperature variation of 

different contributions is shown below in Figures 2 to 4. The uncertainty associated with the 

coefficients b, B and C of equations 4 and 5 is shown in figure 2. The pressure measurement 

uncertainty contains two contributions: the absolute value of the measurement and the noise due 

to imperfect regulation. The uncertainties associated with the measurement and regulation of 

pressure are shown in figure 3. In figure 4, extra contributions due to the reference temperature, 

the compressibility of the resonator, and the microwave frequency measurement are added. 

When all uncertainty components are propagated, we obtain the graphs shown in figure 5.  

 

The uncertainty in T is linked to the working pressure chosen as shown in figure 6. At relatively 

high pressures (e.g. 90 kPa), the effect of the uncertainty in the density virial coefficient B will 

be the largest; at relatively low pressures (e.g. 10 kPa), the uncertainty in the frequency 

resolution will dominate.  While the lowest uncertainty appears to be obtained at 90 kPa, there is 

a risk of pre-condensation at such a high pressure. A value of 30 kPa represents a safe 

compromise. At this pressure the combined uncertainty for the range 5 to 25 K lies between 

0.15 mK and 0.25 mK, which is comparable with the accuracy provided by acoustic gas 

thermometry [21].  

 

5 Suggested experimental procedure and necessary precautions  

 

The purpose of this paper is to propose a method for accurate low-temperature thermometry 

based on relative refractive index measurements and not to describe in detail the apparatus, 

which is currently under development. The experimental procedure is straightforward: measure 

several resonance frequencies as a function of temperature, including the neon triple point 

24.5561 K. The most convenient way to do this is to use a servo-loop to lock the oscillator 

frequency to a given resonance. To test for systematic effects, one would make measurements 

using both TE and TM modes [13] as well as frequent scans over line profiles (see above 
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section 3). To measure temperatures, one must measure resonance frequencies with the resonator 

both empty and while filled with the test gas at a fixed pressure.  

 

However, to achieve the level of accuracy illustrated by the graphs of Figures 2 to 6, particular 

care will be needed in key areas: pressure measurement and regulation, gas-handling, 

thermometry and the transport of the microwave signals.  The gas pressure at 30 kPa must be 

regulated to within ±0.1 Pa and measured with an uncertainty of 30 ppm (i.e. 1 Pa at 30 kPa).  

One must also estimate the hydrostatic head correction with a small uncertainty. To do so, the 

tubing configuration must be designed to allow calculable corrections, as in reference [20]. The 

procedure will involve making temperature measurements at several points along the length 

between resonator and pressure balance. To prevent contamination, the entire gas handling 

system, from the bottle of ultra-pure helium to the vacuum pumps, should have only metal tubing 

and all-metal joints. Moreover, one should include a cold trap at 4.2 K to remove any impurities. 

To avoid unwanted production of hydrogen within the apparatus, the use of stainless steel should 

be minimized.   

 

A system similar to that used to measure the Boltzmann constant by acoustic thermometry of 

helium would be ideal [11], although the pressures involved here are lower. The temperature of 

the resonator (measured using a rhodium-iron or other suitable secondary resistance 

thermometer) should be regulated to within 0.01 mK, which is close to the state-of-the art. At 

temperatures around 24.6 K, the thermal expansion coefficient of copper is at least 53 times 

lower than at room temperature [22]. This relaxes the constraint of having exactly the same 

temperature under vacuum and at the pressure 30 kPa: a difference of 1 mK would produce a 

relative shift of the measured frequency of only 10
-11

, i.e. 100 times less than the resolution. At 

the same time, the low thermal expansion will reduce the expansion or contraction due to a 

change of temperature by the same small amount. As a consequence, the speed at which the 

frequency changes would be limited only by the response of the gas. This will enable one to step 

from one temperature to another far more quickly than is possible near room temperature. 

Finally, particular attention should be paid to the coaxial cables used to transport the microwave 

signals. They also conduct heat from the hot end at room temperature to the cold end near 24 K. 
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They will cross several layers of thermal shielding and will need to be well thermalized at every 

stage of the cryostat before any meaningful temperature measurements can be made. 

 

6 Conclusion 

 

We have described the principle and parameters of a Single-Pressure Refractive Index Gas 

Thermometer (SPRIGT) for accurate temperature measurement in the range 5 K to 25 K. It is 

based on a ratio technique that compares the refractive index of a gas at an unknown temperature 

and at a reference point (here the neon triple point). Due to the use of a ratio, there is no need to 

know the absolute value of the isothermal compressibility, kT, of the resonator material which is 

perhaps the most difficult variable to estimate in RIGT and DCGT measurements; one needs 

only to know how it changes with temperature. The use of a ratio also alleviates the need to 

know the effect of the microwave correction for tube or antenna effects provided they remain 

constant over the temperature range in question.  

 

Thanks to the recent reduction of the uncertainty in the ab initio calculation of the properties of 

helium gas, it should be possible in principle to obtain a temperature uncertainty of no more than 

0.25 mK. Moreover, improvements of several important parameters seem likely in the next few 

years. In particular, we expect that the relative uncertainty ur(Tref) of the reference temperature 

will be reduced fourfold by careful use of acoustic or noise thermometry, and that the absolute 

pressure measurement uncertainty will be reduced from 33 ppm to 5 ppm. With more refined ab 

initio calculations, the uncertainty u(B) in the coefficient B, will be reduced at least twofold [23]. 

With these expected improvements, SPRIGT should become at least as accurate as dielectric 

constant gas thermometers currently in use (see e.g. [24]) without the need for a low uncertainty 

in the absolute pressure measurement. 

  

In addition, the device would also allow thermometry to be performed more rapidly than other 

instruments of comparable accuracy. Although in principle RIGT and DCGT can be performed 

using measurements under vacuum and at only a single pressure, in the vast majority of such 

experiments several pressures are required to achieve a small uncertainty. SPRIGT will be able 

to achieve a small uncertainty by using only measurements at vacuum and at a single pressure. 
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Thus it should be possible to perform the thermometry at least 10 times faster, which would be a 

huge saving in time and effort.  
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Figure 1. The half-width gn of a microwave resonance in a quasi-sphere as a function of 

temperature in the range 30 K - 100 K. The half-width is even smaller below 30 K.  
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Figure 2. Expected contributions to the uncertainty due to the virial coefficients B, C, and b, for 

temperature measurements referred to the triple point of neon (24.6 K). The hump near 7 K is 

due to values of uncertainties for B given in the literature [2]. Key: – – – – –   dielectric virial 

coefficient b : ------- virial coefficient C,  –  –  –virial coefficient B ; ——— combined 

uncertainty due to virial coefficients.  
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Figure 3. Expected contributions to the uncertainty due to pressure at 30 kPa, for temperature 

measurements referred to the triple point of neon (24.6 K). Key: – – – – –    absolute pressure 

measurement :  –  –  –pressure regulation ; ——— combined uncertainty due to pressure. 
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Figure 4.  Expected contributions to the uncertainty due to temperature, the compressibility of 

the resonator, the microwave frequency, and the reference temperature, for temperature 

measurements referred to the triple point of neon (24.6 K). Key: – – – – –  Tref,neon  : ------- 

compressibility from Gaiser et al.[13 ],  –  –  –microwave frequency measurement  ;      

temperature control; ——— combined uncertainty due to measurement.  
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Figure 5. Total expected uncertainty, from Figures 2-4 at 30 kPa, in temperature measurements 

referred to the triple point of neon (24.6 K). At temperatures below 20 K, the dominant 

contribution is due to the pressure measurement.  

Key : – – – – –  combined measurement  : ------- combined virial,  –  –  –combined pressure  ; 

——— combined uncertainty.  
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Figure 6. Total uncertainty expected in temperature measurements referred to the triple point of 

neon (24.6 K), for fixed gas pressures in the range 10 kPa to 90 kPa.  Key: – – – – –  P=10kPa; – 

 –  –P=30kPa;  ------- P=90kPa.  
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Figure Captions  

Figure 1  

The half-width gn of a microwave resonance in a quasi-sphere as a function of temperature in the 

range 30 K - 100 K. The half-width is even smaller below 30 K.  

 

Figure 2  

Expected contributions to the uncertainty due to the virial coefficients B, C, and b, for 

temperature measurements referred to the triple point of neon (24.6 K). The hump near 7 K is 

due to values of uncertainties for B given in the literature [2]. Key: – – – – –   dielectric virial 

coefficient b : ------- virial coefficient C,  –  –  –virial coefficient B ; ——— combined 

uncertainty due to virial coefficients.  

 

Figure 3  

Expected contributions to the uncertainty due to pressure at 30 kPa, for temperature 

measurements referred to the triple point of neon (24.6 K). Key: – – – – –    absolute pressure 

measurement:  –  –  –pressure regulation ; ——— combined uncertainty due to pressure. 
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compressibility from Gaiser et al.[13 ],  –  –  –microwave frequency measurement  ;      

temperature control; ——— combined uncertainty due to measurement. 

 

Figure 5  



 23 

 

Total expected uncertainty, from Figures 2-4 at 30 kPa, in temperature measurements referred to 

the triple point of neon (24.6 K). At temperatures below 20 K, the dominant contribution is due 

to the pressure measurement.  

Key : – – – – –  combined measurement  : ------- combined virial,  –  –  –combined pressure  ; 

——— combined uncertainty.  
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Total uncertainty expected in temperature measurements referred to the triple point of neon (24.6 

K), for fixed gas pressures in the range 10 kPa to 90 kPa.  Key : – – – – –  P=10kPa; –  –  –

P=30kPa;  ------- P=90kPa.  

 


