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Abstract: As one of the key requirements in the intelligent vehicle, accurate and precise localisation is essential to ensure swift
route planning during the drive. In this study, the authors would like to reduce the longitudinal positioning error that remains as a
challenge in accurate localisation. To solve this, they propose a data fusion method by integrating information from visual
odometry (VO), noisy GPS, and road information obtained from the publicly available digital map with particle filter. The curve of
the VO trajectory trail is compared with road segments curve to increase longitudinal accuracy. This method is validated by
KITTI dataset, tested with different GPS noise conditions, and the results show improved localisation for both lateral and
longitudinal positioning errors.

1 Introduction
Accurate vehicle localisation has been immensely researched for
years, in the development towards the autonomous vehicle. While
the technology has started to develop and been in the market in
recent years, it does not stop the motivation for further research.
Besides its application for an autonomous vehicle, the current
positioning and routing technology in vehicles should also be
improved. There are still many issues that need to be addressed as
the road network structure is becoming more complex with urban
development and this frequently causes interruptions in localisation
and path planning.

While low-cost GPS is widely used for localisation, it suffers
from several conditions such as the multipath and non-line-of-sight
effects especially in urban areas due to the dense buildings or other
constructions like tunnels and bridges [1]. Zair et al. [2] proposed
to overcome GPS signal problem to improve its accuracy by
detecting and removing the outliers. This resulted in reliable GPS
data, but the method consumes complex computation and the
results are inconsistent particularly in biased GPS noise. Therefore,
data fusion with other sensors is desirable to overcome this
problem. Data fusion for vehicle localisation can be from several
sensors and among those are LIDAR, GNSS receiver, camera
sensor, Inertial Measuring Unit (IMU), and a radar sensor. In
addition, the digital map can also be used as an input for the data
fusion. These data and information can be used together, without
requiring prior computation or data compensation, to provide new
information of an estimated state.

For instance, Hata et al. [3] proposed curb detection by 3D-
LIDAR fused with motion estimation by GPS/IMU. The paper
presented a novel method for curb detection by using multilayer
LIDAR to extract curb structure even with the existence of
obstacles. Although the localisation performance is good, it still
suffers from longitudinal error and the system is quite expensive.
As our research motivation, we would like to reduce the
localisation system cost by avoiding high cost sensors such as
LIDAR and RTK GPS although they can easily provide accurate
positioning for the vehicle [4, 5]. Generally, sensors used for
localisation can be divided into two – passive and active sensors.
LIDAR is an example of an active sensor since it transmits light
pulse and detects the reflected light. Active sensors are not only
more expensive, but they also consume more energy. Therefore, we
would prefer passive sensors for cost optimisation in vehicle
localisation.

Meanwhile, Gu et al. [6] have proposed a low-cost localisation
method by passive sensors data fusion from 3D-GNSS, inertial
sensor and camera sensor. The inertial sensor is used to smooth the
positioning trajectory, but the drift makes it difficult to achieve
accurate localisation. Thus, camera sensors are utilised for lane
marking detection to reduce lateral positioning error while
observing lane-keeping or lane-changing behaviour. The results
show submeter positioning accuracy, but the method highly relies
on the availability of 3D maps and it does not consider GNSS
signal outage. On the other hand, Brubaker et al. [7] presented an
interesting localisation technique by only using a camera for visual
odometry (VO), matched with the digital map by a probabilistic
model. It has an interesting approach that achieved a positioning
error average of about 3 m, but it failed to perform well in
ambiguous road networks. Besides, these works did not include
further quantitative analysis on lateral and longitudinal errors. The
lateral error can usually be improved because vehicles do not move
vertically, and it can be compensated by using road width
information obtained from lane marking on both sides of the road
as presented in [8]. However, the longitudinal error remains a
problem for localisation especially when the vehicle is moving on a
straight path or road without intersections.

Most of the work in vehicle localisation [9–11] utilised stop
lane marking or intersection detection to correct the longitudinal
position and overcome this problem but there is a possibility of
occluded lane markings or roads without lane markings that can
degrade the localisation performance. Previously, the authors of [3,
6, 11] proposed map matching approach by processing the image
for road lane markings extractions and curb detection to compare
with a road curve on the map. These localisation methods can
reduce longitudinal error by profiting the vehicle's heading
variation and slower speeds at intersections, which contribute to
more accurate results. In fact, many studies performed an
evaluation on residential road drive with intersections to
compensate the VO drift after each turn [12–16]. This leaves a
research gap of what will happen if the road network is a stretch of
long straight road, with higher speed, or without intersections?
Thus, a new strategy is required to address the longitudinal
problem in such road condition.

Zeng et al. in [17] also presented a curve matching method
whereby they performed curve comparison from GPS data with
map roads. However, since GPS data typically contains noise –
unless a high precision GPS device is used – it needs to be filtered
to obtain a functional curve for comparison. Hence, using a similar
concept, we utilise curve comparison with the road network on the
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map but by using VO trajectory with the assumption that the VO
trajectory curve often complies with road curve. Besides, by VO
curve comparison, we can build a complimentary system to the
lane markings detection that has disadvantages of obstructing
objects, markings clarity and vehicles with high speeds that might
not be able to capture the images clearly.

Our proposed approach is an extension of our previous idea in
[18] where VO was integrated with noisy GPS by particle filter
(PF) and road information obtained from OpenStreetMap (OSM)
was used to manipulate particles weight that falls within the road
boundary. Before, we only employed road information from OSM
to obtain road width and mainly improved the lateral error.
However, this time we also adopted VO trajectory curve
comparison of the last few poses with road segments within
searching radius aiming to evaluate the improvement of
longitudinal localisation. Our method assigns probability weights
to each road segment within search boundary as a factor for
particles weight update to obtain a more accurate localisation and
evaluate its positioning error. Different noise models are applied to
the GPS data to test the robustness of our localisation. The details
of our proposed method are explained in the next section.

2 Vehicle localisation
2.1 Positioning error

Vehicle localisation performance in accuracy and precision is
generally measured by positioning error analysis which can be a
relative distance error, heading error, lateral error, and longitudinal
error. Distance error is the relative distance difference between
ground truth data and fusion output while heading error is its angle
difference. In order to reduce the distance error, we need to
minimise the lateral and longitudinal errors.

The position difference in the lateral axis (left/right of the
object) is denoted as a lateral error and longitudinal error is the
distance difference in the longitudinal axis, which makes the
localisation to appear ahead or behind the ground truth data
(Fig. 1). While lateral error can be minimised by considering the
road width factor, the longitudinal error remains difficult to be
reduced especially for a drive with less heading variation and
without intersection, stop or road markings. The principle of error
reduction is that there must be a boundary or limit for the error
range, like how the lateral error is limited by the road width. Thus,
if we can limit the longitudinal range by using segments of the
road, the error should also be decreased, with the condition that the
true segment has been chosen correctly. For this reason, we
propose a data fusion approach by matching the VO curve with
road segments within a limited lookup range obtained from the first
step of VO and GPS data fusion to find the road segment with the
best fit. 

2.2 System framework

System framework of our proposed method is depicted in Fig. 2. It
mainly consists of three types of input for data fusion; a stream of
images from camera, noisy GPS and map information. Firstly, the
images are processed to generate a trajectory based on VO that
detects and tracks moving feature points. It is fused with the GPS
data to obtain the global position. Like our previous approach [18],
road information such as road type and a number of lanes are
extracted from the map database mainly for lateral error correction
by road probability distribution factor (RPDF). Road type
information determines the road width estimation, hence limiting
lateral positioning error. Meanwhile, road lane distribution as
depicted in Fig. 3 contributes in fusion level for further
improvement in lateral error by probability factor α with value p is
pre-set based on trajectory direction. More details on multi-lane
road probability distribution are explained in [18] for lane-level
localisation. 

In this paper, we utilised the output pose of VO and GPS fusion
to act as a lookup centre for road segments curve estimation. These
segments have a probability assigned based on their distance from
the centre and similarity with VO curve. From VO trajectory
output, we compared a specified length of latest trajectory curve
with road segments from the map as a weighing factor for PF
during the next step of data fusion. Then, different types of GPS
noise were simulated to observe the performance and robustness of
our proposed approach. According to the experiment conducted by
Limsoonthrakul et al. [19], GPS signal noise can be divided into
three categories: random GPS, shifted/biased GPS, and GPS signal
loss and we adopted all types for method validation.

2.3 Visual odometry

VO is the displacement estimation of a moving vehicle based on
images sequence obtained from stereo or single camera. It was first
introduced for Mars Exploration Rovers to overcome trajectory
drift produced from wheel odometry [20]. Since then it has been an
interesting field of research for robot and vehicle localisation
application.

VO is performed by tracking the detected features in sequential
image pairs and translates the movement flow into the trajectory.
The image pair captured at the time k is referred to as Ik and Ik + 1.
In our work, we applied a typical front-end monocular VO with its
scale estimated from the ground truth during initialisation. Features
from Accelerated Segment Test (FAST) algorithm is used for
detecting interest points in the image as introduced by Rosten and
Drummond [21] where it utilised 16 contiguous pixels around the
candidate point. FAST is recorded to have better performance in
detection error and speed compared with scale-invariant feature
transform and speeded-up robust features [21–23]. Then, Kanade–

Fig. 1  Localisation positioning error
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Lucas method is adapted for optical flow calculation by estimating
the movement from the similar motion of the 3 × 3 pixels patch
around the feature point that matches with the previous image Ik − 1

[24]. The translation and rotation information of the displacement
is estimated by an essential matrix E based on five-point algorithm
solver [25] and Random Sample Consensus is applied to select the
fundamental matrix with the most inliers. Essential matrix E is
decomposed by using singular value decomposition [26] to acquire
the rotation matrix R and translation vector T shown as

E = [T]×R, (1)

where [T]× is the matrix of image pair translation vector
Tk = [Txk, Tyk, Tzk]

⊤ at a time k, which can be expressed as

[T]× =
0 −Tzk Tyk

Tzk 0 −Txk

−Tyk Txk 0
, (2)

and the rotation matrix Rk for the image Ik is written as

Rk =
cos θk −sin θk 0
sin θk cos θk 0

0 0 1
. (3)

The heading rotation of the vehicle is denoted as θk and the output
trajectory for image sequence at a time k is generated from

xk

yk

zk

=
xk − 1

yk − 1

zk − 1

+
cos θk −sin θk 0
sin θk cos θk 0

0 0 1

Txk

Tyk

Tzk

. (4)

With Xk
⊤ = [xk, yk, zk]⊤, the trajectory generation in (4) can also be

rewritten as

Xk = Xk − 1 + RkTk . (5)

2.4 OpenStreetMap

In recent years, digital maps are widely available and easily
accessible by anyone, provided by map service providers such as
MapQuest, Google Maps, Bing Maps, and OSM. Among these,
OSM is the only collaborative platform which has the Open
Database License that allows users to freely use, share and modify
the data. It is a community driven project where data can be
contributed to GPS devices, aerial photography, manual survey or
any mean and this data is available for public use. Freely editable
OSM feature might cause data glitch in the event of the false edit
but it has more advantages than disadvantages.

OSM is an open source platform while other map providers are
commercial providers that hold a proprietary license, which
restricts certain functions such as map editing for information
update by users. Furthermore, these commercial providers only
provide a full feature in selected countries. Aside from this, OSM
contains detailed information that does not only include road
network, but also road types, way distribution, road restrictions,
vehicle maximum speed, and a number of lanes. Currently, we
have only used road information such as ways connectivity,
number of lanes and its direction for this research, but the abundant
data provided by OSM creates a bright research prospect in future
applications. OSM data structure is based on three core elements:

• Nodes: points with a geographic position that are usually used in
ways and to specify the point of interest.

• Ways: lists of nodes in orders that have at least one tag or is
included within a relation.

• Relations: ordered lists of one or more nodes, ways and relations
and consist of one or more tags to describe geographic or logical
relationships between other elements.

Tags, consisting ‘k’ (key) and ‘v’ (value) to store metadata
about the map object properties, can exist in all elements in OSM.
For our localisation method, we filtered out road network based on
the tags and other map attributes are omitted to ease computation.
These roads are then rendered with Mapnik rendering rules by
using Maperitive to obtain roadmap with specific road width.
Mapnik style is generally used by OSM to display raster images for
the map and it is the most popular server-side 2D map renderer.

Roads filtered from the raw OSM file produces sets of ways
constructed by sets of nodes where the distance between nodes is
not consistent depending on the road shape. In some cases, the
nodes are too distant from each other on a stretch of straight roads.
Thus, we set the distance of a minimum node based on a threshold
specified by road speed limit that will be explained in the next
subsection.

Fig. 2  System framework of proposed approach
 

Fig. 3  Full trajectory
(a) Single-lane, one-way road, (b) Bi-directional road
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2.5 Curve matching

Our proposed system utilises curve matching as a measure to
compare the similarity between VO trajectory curve and map nodes
from OSM. This requires the knowledge on curve length,
orientation, and heading variation to optimise longitudinal
positioning accuracy. Since OSM nodes are spaced mostly
according to its shape linearity, we need to define the distance
threshold between nodes to obtain sets of three nodes (node-trio)
that has similar length with VO curve. This algorithm is illustrated
in Fig. 4 and more details are as follows:

(a) Firstly, the value of m is determined to specify the required VO
length. Thus, the curve matching is performed on the last m poses,
Xk − m ∼ Xk where the duration of the curve fragment, t relies on
VO's frame rate, f.

t = m
f . (6)

(b) Knowing the vehicle average speed, v̄ the distance threshold
between nodes, dth

n  is calculated as in (7). In order to obtain the
distance in metre, vehicle speed (km/h) is converted by multiplying
103/3600. Since we utilise sets of three nodes to define the OSM
curve, the distance threshold between two nodes is divided by 2.

dth
n = v̄t

2 × 103

3600 . (7)

(c) At the same time, the travelled distance of the VO curve, dth
vo

within the last m poses is computed to find the difference with dth
n .

dth
vo = 1

2 ∑
i = k − m

k
(xi − xi − 1)2 + (yi − yi − 1)2 . (8)

(d) If the difference is negligible, the larger distance threshold is
used to minimise new middle nodes generation. Hence,
dth = max (dth

n , dth
vo). Else, VO trail length is chosen dth = dth

vo.
(e) With the fusion between GPS and VO, the vehicle position can
be estimated on the map and the nodes around the location are
found. Distances between nodes from the OSM data are recorded
as dn.
(f) Finally, in order to distribute road map probability with
longitudinal accuracy optimisation, new nodes are replicated in
between of nodes that are too distant with each other. The number
of new middle nodes, nm is obtained by rounding results of nodes
distance division with a threshold to the nearest integer

nm = dn
0.5 × dth

+ 0.5 × dth

The length of node-trio curve and VO travelled curve distance
is not exactly equal all the time, but the difference is too small
(<0.05%) and negligible. To compare the curve similarity between
a fragment of VO trajectory curve and nodes of roads on OSM, the
computation of curve similarity score, Scs relies on two key
parameters: initial orientation θk

in and curve heading variation ϑk.
Parameters for VO trajectory trail are defined as

θk
inVO = θk − m, (9)

ϑk
VO = ∑

i = k − m/2

k
(θi + 1 − θi) . (10)

Three nodes curve from OSM data is illustrated in Fig. 5 and
for the n’th node found within the searching radius, the initial
orientation of the first two nodes θk

in(n) and curve change ϑk
(n) are

calculated as

θk
in(n) = arctan Δy0, 1

(n)

Δx0, 1
(n) , (11)

ϑk
(n) = arctan Δy1, 2

(n)

Δx1, 2
(n) − θk

in(n) (12)

With these parameters, the curve similarity score Scs is obtained
from the difference of initial orientation θk

in between nodes and VO
curve and its heading variation varthetak which can be written as

Scs = Δθk
in(n) × Δϑk

(n) . (13)

The curve matching steps from VO trajectory curve fragment to
surrounding nodes are illustrated in Fig. 6, where it starts from

(a) The extraction of VO trajectory trail since the last m poses,
followed by
(b) Connected nodes in ways are detected within a searching area
from lookup centre.
(c) Then, the nodes are paired with neighbouring nodes to form
‘node-trios’. All sets found within the area are compared with the
VO trajectory curve to obtain the most similar road segment to be
matched.
(d) Finally, node-trio with the highest similarity score is identified
and the road segment contains the highest probability that would
affect particles’ importance weight during data fusion.

This approach allows the curve matching to be conducted in
small fragments to obtain the most likely candidate of the road
segment and also reduce computational cost. This is because by
assessing only small fragments of trajectory within short travel

Fig. 4  Algorithm for nodes generation in OSM data
 

Fig. 5  Angle parameters from three nodes used for curve matching
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periods, the resulted curve is limited to second-order polynomial
regardless of the overall road curve complexity. Generally, only
double bend roads (as in Fig. 7) will result in third-order
polynomial curve or above. Still, since there is a minimum radius
limit for each road curve [27] and we are only assessing the last 2 s
of pose sequence, the trajectory curve will not be long enough to
exhibit third-order polynomial curve. 

2.6 Data fusion

The input from VO, noisy GPS and OSM are fused by using PF in
our proposed approach. The fundamental principle of PF is to use
random samples (particles) to represent the posterior density of
vehicle position in a dynamic state estimation framework such as
road map information. It estimates the instate-space model's
inference by expressing the posterior probability density in terms
of random particles associated with importance weights. The
filtering consists of several steps:

(a) Initialisation: At the time k = 0, N particles are sampled around
X0 with equal weight w0

(i).

X0
(i) ∼ p(X0), (14)

w0
(i) = 1/N . (15)

(b) Pose estimation: For i = 1, . . . , N, particles are displaced
based on VO trajectory vector. The displacement distance is
denoted by dk and θk is VO heading rotation. Hence the position
estimation is calculated as

xk
(i)

yk
(i)

zk
(i)

=
xk − 1

(i)

yk − 1
(i)

zk − 1
(i)

+ dk

cos θk

sin θk

0
(16)

(c) Weight update: For a particle i, the importance weight update is
based on its distance from GPS data βk

(i), position in/outside the
road κk

(i), and way candidate score γk
(i) obtained from curve similarity

Scs. Aside from curve similarity, γk
(i) is also determined by its

distance from the lookup centre Xk
(C) to find the most suited nearby

candidate by probability density function. The explanation for each
factor is described below:

i. The relative distance of the particle i from noisy GPS is
measured as dGPS

(i) , and it will exponentially affect the
importance weight of the particle by noisy GPS factor βk

(i). This
is obtained from an exponential distribution to indicate that the
factor decreases with an increasing distance of the particle
from the GPS position

βk
(i) = e−(1/2)dGPS

(i) . (17)
ii. The road probability factor is defined as α = p when the

particle is within road area that has the same direction with VO
heading direction, and α = 1 − p if the particle falls on the
road in the opposite direction (if any). For instance, for a
simple single lane bi-directional road, p is set as 0.8. As for the
particles outside the road area, road probability factor is
reduced exponentially by its distance. Thus, the factor κk

(i) is
calculated as

κk
(i) =

α, if Xk
(i) isinside road area,

αe−(1/2)dr
(i)2, otherwise

(18)

where dr
(i) is the distance between the particle xk

(i) and the road
boundary.

With the value of the factor in (17) and (18), these are
multiplied with the current particle weight wk − 1

(i)  to obtain an
updated weight after considering its position on the road map
and distance from GPS. Then, the particle with the highest
weight is selected as the best candidate to become the lookup
centre, where its position is recorded as Xk

(C).

Xk
(C) = arg max

Xk
(i)

wk − 1
(i) βk

(i)κk
(i)

(19)

iii. From the lookup centre Xk
(C), candidate ways are searched

within a specified radius. From the candidate ways found in the
searching area, the ways candidate score γk

(n) is estimated based
on its distance from the lookup centre Xk

(C) and curve similarity,
Scs, is measured by the difference in key parameters between
VO and OSM curves as shown in (13). Smaller Scs indicates a
higher similarity between both curves and this will yield an
increased probability of the way candidate score, γk

(n).
Assuming dc is the distance between Xk

(C) and node n, γk
(n) is

calculated from Gaussian distribution as

γk
(n) = 1

2π
e−(1/2) dcScs

2 . (20)

From the parameters, we will be able to obtain the best road
segments candidates especially on curved roads or when the
vehicle moves onto an intersection. It is still difficult to
optimise longitudinal error on a straight road without heading

Fig. 6  VO and OSM node-trio curve matching steps
 

Fig. 7  Double bend road in drive 34 with 2 s of VO trajectory in quadratic
curve appended in the small box
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variation and intersections. However, our fusion technique will
at least limit the longitudinal error from the probability
distribution of candidate ways within the lookup range. This is
illustrated in Fig. 8.

iv. Lastly, particle weight is updated by multiplying the way
candidate score from the particle with other factors:

wk
(i) = wk − 1

(i) βk
(i)κk

(i) γk
(n)

2π
. (21)

(d) Resampling: Before resampling, the particle weight is
normalised from the sum of all particle weights as

w~k
(i) = wk

(i)

∑i = 1
N wk

(i) . (22)

To determine the suitable condition for resampling, the number of
effective sampling sizes is calculated as

Ness = 1
∑i = 0

N (w~k
(i))2 , (23)

and when the effective sampling size is less than a certain threshold
Ness < Nthres, particles will be resampled. Those with lower
importance weights are removed and replaced by duplicating
equally distributed particles in the proximity of particles with
higher weights. In order to overcome filtering degeneracy problem
where only a few of the particles will have a significant weight, the
threshold is set to balance multilevel fusion while at the same time
does not eliminate the possible candidate particles. Therefore, for n
level of fusion, we set the threshold as Nthres ≃ N /en. Here, since
we used N = 1000 for the particles size and four levels are applied
for fusion (GPS distance, RPDF, distance from fusion output, and
curve similarity score), our Nthres value is 25.

3 Method validation
Our proposed method is validated by using KITTI dataset for
localisation by VO. In this paper, our study is focused on
longitudinal error correction so we analyse the localisation
performance in two types of drives – highway and residential areas.
Then, to test the localisation performance against noisy GPS,
different noise models are applied in both drives – the extreme
random noise of 10 m, biased GPS noise and lost GPS signal.

In our study, we implemented m = 20, which means only the
last 20 poses (2 s of VO trajectory with a frame rate of 10 Hz) is
considered as the curve fragment. The curve length will differ
according to vehicle travel speed and this corresponds to the node-
trios that are distanced based on threshold calculation from vehicle
average speed or VO curve. In the case of VO trajectory with
severe scale ambiguity, speed can be estimated from the road speed
limit provided by OSM data. The pre-set m value was determined
based on trade-off consideration between accuracy and
computation cost. In order to obtain an accurate longitudinal
position, the road segments should be as short as possible.

However, if we set m = 10 (last 1 s of VO trajectory), most of
the resulting segments would be mostly found as straight trajectory
trail. For instance, assuming the vehicle moves at 30 km/h, 1 s of
displacement is only about 8.3 m in length. If it is a curve road,
considering the least degree of a significant curve is 10°, this
would result in a minimum radius of 55.6 m for the road. However,
according to [27], the minimum road radius with a speed limit of
30 km/h is 60 m. Therefore, this would be sufficient for the curve
analysis where the minimum curve length would be 10.5 m.
Besides, this would degrade the efficiency of finding the best road
segment candidate with the lack of information in a vehicle
heading change. Hence, we concluded that 2 s of travel distance is
ample to obtain accurate curve segment for analysis. On the other
hand, if the m value is increased to 40, the trajectory curve length is
longer and the distance between nodes will increase. As a result,
longitudinal positioning would be less accurate with longer road
segment containing similar probability distribution.

As for the search area size, candidate ways are searched within
a specified radius of about 30 m from the lookup centre Xk

(C) since
we have an approximate location from the noisy GPS of up to 10 m
accuracy. At the same time, we need to consider the possible bias
or blunders, therefore an additional 20 m as a buffer zone is also
considered in this study. Further distance is not considered since it
might result in unnecessary road segment probability appearance in
the ambiguous road network. Besides, expanding the search area to
a larger size would only increase computational cost with a greater
number of nodes found in the area for probability calculation.
Therefore, we fixed it to 30 m while observing the effects of lost
GPS signal on localisation performance.

3.1 KITTI dataset

KITTI dataset provided by Geiger et al. [28] consists of image
sequences for VO with frame rate of 10 fps, data from Velodyne
sensor (not utilised) and RTK-GPS data treated as ground truth for
validation. In our study, we utilised two types of datasets where the
first dataset consists of a highway drive with an instance of exiting
the highway into a diverging road at the speed of around 60 km/h.
The second dataset is a drive recorded in a residential area with
many intersections. Trajectories for both tests are shown in Fig. 9
and zoomed trajectories with road segments probability distribution
represented by nodes radius size are depicted in Fig. 10. 

3.2 Noisy GPS

A system cannot be proved to be robust unless it has been tested
under extreme conditions. A study on data fusion performance
under different GPS noise conditions for both lateral and
longitudinal errors was conducted by Limsoonthrakul et al. in [19].
The proposed localisation method integrates data from the camera
sensor, GPS and wheel encoder. A camera is used to classify road
from the image and GPS noise is manipulated to observe its effect
on the data fusion trajectory. As expected, the lateral error is
reduced significantly owing to the road classification while the
longitudinal error was only moderately reduced. Overall
performance comparison is made between Kalman filter (KF) and
PF where the results show that PF performs better especially when
GPS error is high and during the signal outage. This motivates us
to develop a localisation method that can withstand various noise
types while improving the localisation error.

To test the robustness of our system in different noise scenarios,
we chose to model different types of noisy GPS as one of the
fusion inputs during method validation. By doing that, we were
able to evaluate the response of our filter on the common noises we
found in low cost GPS in different environmental conditions. To
achieve this, random noise was added to the RTK-GPS data which
was down sampled to 12 Hz of frequency. Albeit GPS signal noise
varies based on the receiver device specification and the
surrounding environment, it generally can be characterised as a
combination of flicker noise and white noise [29]. Thus, we
initiated the noise with specific bias and variance with a 2D

Fig. 8  Probability distribution of candidate ways from fusion output as
lookup centre
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Gaussian distribution that represents the white noise and a coherent
Perlin noise was added to simulate the flickering noise behaviour.
The noise is generated from (24) below. Assuming that [x⌣k, y⌣k, z⌣k]⊤

is the ground truth position, noisy GPS [ẍk, ÿk, z̈k]⊤ is defined as

ẍk

ÿk

z̈k

=
x⌣k

y⌣k

z⌣k

+ εG

cos θp

sin θp

0
(24)

where εG ∼ N(μ, σ2) is a random Gaussian noise with mean μ and
standard deviation σ. This Gaussian noise εG acts as the white noise
amplitude and θp is generated from Perlin noise.

GPS noise can be caused by three main error sources which are
noise, bias and blunders as depicted in Fig. 11 [30]. Noise error is
the most common source that is the combined effect of pseudo
random noise (PRN) with the noise within the receiver itself. In our
validation, this noise error was implemented with random noise
that has zero bias and extreme variance of up to 10 m, similar to a
low-cost GPS receiver accuracy. 

Meanwhile, bias error in GPS can be a result from Selective
Availability (SA) or some other factors. SA is the intentional
degradation of the standard positioning service (SPS) signals by a
time varying bias that introduces delta error resulted from dithering
the satellite clock. Since SA is a changing bias with low frequency
(excess of a few hours), position solutions or individual SV
pseudo-ranges cannot be effectively averaged over periods shorter
than a few hours. Other factors that result in bias error include

• Ephemeris data errors that contain imprecise orbital data.
• Tropospheric delays which are affected by the atmospheric

pressure, temperature and humidity experienced in the
troposphere layer of the atmosphere.

• Unmodelled ionosphere delays where the ionosphere layer
bends the GPS radio signal and changes its speed, and

• Multipath effect caused by reflected signals from surfaces near
the receiver. This source is difficult to detect and avoid.

We simulated the bias error by shifting the GPS position 5 m in
a global lateral position from the ground truth and with the same
10 m variance. This would result in a higher tendency of events
where the GPS data falls into the road with the wrong direction or
outside the road boundary.

Lastly, blunders are also one of GPS error sources where it can
result in hundreds of meters of error due to user mistakes,
including incorrect geodetic datum selection. This kind of large
error can also be resulted from out of date GPS data due to signal
unavailability due to blockades. To model this noise, the GPS data
is turned off for a specific time range, so the localisation mainly
relies on information from VO and map.

3.3 Results

Localisation performance is evaluated from the lateral and
longitudinal errors of both datasets, comparing the performance of
the proposed method as presented in this paper with the
conventional fusion of GPS and VO by PF and our previous
method without curve matching but with RPDF approach.
Positioning error results for both highway and residential datasets
are shown in Figs. 12 and 13, respectively. 

3.3.1 Highway drive: For the highway drive during GPS with
random noise (both unbiased and biased cases), it can be seen from
Figs. 12a and b that the longitudinal error is improved significantly
in the first 70 frames when the vehicle is driven in a straight road
and facing road divergence. Regardless of the bias applied to the
GPS noise, our method proved to be unaffected by the noise and
able to select the best candidate road segment that matches with the
true trajectory. As for the lateral positioning error, there is a brief
improvement in random noise case especially during the road
divergence in between frames 45 and 55, and it also shows that the
lateral error tested in biased noise is significantly improved, similar
to its longitudinal error.

Meanwhile, in the case of a lost GPS signal, as depicted in
Fig. 12c, our previous approach without road segment curve
matching suffered horrendous positioning error. In fact, the
localisation failed to relocate its position even after the GPS signal
is recovered, as can be seen from the results due to the travelled
distance being too far from the ‘lost’ particle cloud. However, our
proposed approach maintained minimal error owing to the curve
matching of VO trajectory and road segments that enabled the
localisation to detect the candidate road segment with the most
probability. The longitudinal error result shows that our method

Fig. 9  Full trajectory
(a) Highway drive, (b) Residential drive

 

Fig. 10  Fusion output trajectory during road divergence
(a) Zoomed trajectory, (b) Road segments probability distribution

 

Fig. 11  GPS error sources
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managed to maintain an error below 5 m for the whole drive as
opposed to the error of the previous method that could reach up to
20 m for both lateral and longitudinal errors.

3.3.2 Residential drive: Our second test was conducted on a
longer drive at a residential area and error results are shown in
Figs. 13a–c. During the random noise test, it did not show
remarkable improvement in positioning error since both RPDF and
our proposed method had the similar basic approach in localisation
and there was no case of severe GPS error that could affect path
selection. Since the vehicle speed in the residential drive was lower
and the intersections were easily distinguished, the localisation
showed a consistent performance even without the curve matching
method. However, in overall, our proposed approach still achieved
a smaller error compared with other methods in some instances
where the RPDF longitudinal error peaked over 5 m.

In the biased error test for the residential drive, the results as
displayed in Fig. 13b is particularly interesting for the amount of
error degradation in the result of the method without curve
matching in three events. The first event was during frames 70–120
when the vehicle moved along a straight road and there was a
junction on the right where most GPS points were positioned due
to the bias applied, the previous method assumed that the vehicle
turned into the junction. While the second event happened around
frame 520 to 590, where the vehicle was moving on a sharp curve
that resembled making a U-turn twice, thus resulting the biased
GPS falling into the previous lane. As a result, the previous
approach mistakenly concluded that the vehicle made a U-turn
while the approach proposed in this paper managed to cope with
the situation by integrating the updated VO curve with road curve
fragments for all occurrences.

Lastly, we simulated an instance of GPS signal loss to the
residential drive and the results obtained are shown in Fig. 13c.
The GPS data was turned off between frame 400 and 700 when the
vehicle was moving along a curved road with multiple intersections
on its sides, turning into an intersection and it travelled on a sharp
curve resembling a U-turn. As shown in the error graph, the recent
approach successfully achieved a consistent low positioning error
and was unaffected by this lack of data compared with the results

of previous fusion methods. The RPDF method suffered severe
error of over 40 m during the signal loss, but it was able to recover
the localisation after two attempts. This is due to the slower vehicle
speed and road curves, thus the travelled distance during GPS
signal loss was still reachable by the particle cloud.

3.3.3 Comparison with other VO methods: To study
positioning accuracy after data fusion and curve matching, we
compared the lateral and longitudinal error of the trajectory results
generated from several VO methods – Libviso2 (monocular and
stereo) [31], ORB-VO [32] and ORBSLAM2 [32]. Note that these
methods are purely based on VO, except for ORBSLAM2 that also
performs mapping and loop closure for drift correction. Among
these, ORBSLAM2 had recorded the best performance in

Fig. 12  Lateral and longitudinal localisation positioning errors in
highway drive for different noises
(a) GPS with random noise, (b) GPS with biased noise, (c) GPS signal loss

 

Fig. 13  Lateral and longitudinal localisation positioning errors in the
residential drive for different noises
(a) GPS with random noise, (b) GPS with biased noise, (c) GPS signal loss
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translation error of only 1.15% that provides open source code for
VO without fusion with LIDAR. The comparison of positioning
error for each method with our proposed approach is presented in
Table 1. 

3.3.4 Results summary: The results of distance and positioning
error for the compared approaches are summarised in Fig. 14 for
both datasets and all noise simulations. In the random noise test,
both PF and RPDF approaches suffered a larger error due to the
lack of curve comparison, thus particles weight from data fusion
was mainly affected by the GPS noise. This reduced the
localisation accuracy for these approaches particularly during road
divergence as can be seen from Fig. 12a. RPDF method shows a
lower average in lateral error but due to the inaccurate localisation
on road divergence, high error peaks resulted in higher error
variation in comparison to standard PF approach which has higher
mean and slightly less variation. However, our proposed approach
for the highway drive shows significant improvement in error
reduction to (2.05 ± 1.62) m in lateral error and (2.08 ± 1.58) m in
longitudinal error as a result of successful path selection in
diverging road and more accurate localisation. On the other hand,
localisation performance in residential drive shows less significant
improvement for random GPS noise because the vehicle speed is
lower and it has less probability of resulting in wrong path
selection. 

Meanwhile, we managed to achieve further improvement in
biased noise where both datasets were able to reduce the lateral
error of (2.27 ± 1.76) m and (1.66 ± 1.23) m, respectively, for
highway and residential drive, while the longitudinal error is
reduced to (2.45 ± 1.89) m and (1.76 ± 1.32) m, respectively. Due
to the GPS bias, PF method suffered worse positioning error where
the average error almost doubled up to over 6 m from random GPS

test. However, RPDF method managed to decrease the error to
below 4.2 m and our proposed approach with curve matching
further improved positioning accuracy to <2.5 m in both lateral and
longitudinal errors. This is owed to the final stage of data fusion
that increased particles weight around lookup centre Xk

(C) which
limited the positioning error regardless of noise bias condition.

Finally, for the lost GPS test, positioning error with PF reached
over 10 m and the RPDF method error was worse as a result of
failed path recognition from VO + GPS fusion and persistent road
probability distribution which continued to localise using the
outdated GPS data during the absence of signal. However, our
proposed method has an additional input which is the road curve
matching that enabled localisation correction when GPS data is
found outdated. The localisation performance was maintained with
its average positioning error constantly below 2 m with best
longitudinal performance of (1.43 ± 1.25) m for highway drive.
This shows an interesting outcome where the error was smaller
with the absence of noisy GPS data because the fusion output was
mainly influenced by VO trajectory curve and road information
from the OSM.

Performance comparison with other VO methods also shows
improved positioning accuracy for both lateral and longitudinal.
Regardless of the noise existence in GPS data, we achieved less
error than other VO methods except for biased GPS test on drive
42 (highway road) where ORBSLAM2 performs slightly better.
This is due to the effect of extreme GPS noise with bias that results
in a tendency of biased localisation compared with highly accurate
SLAM approach without noise input. However, our tests with
noisy GPS are simulating the worst case scenario and even so, the
positioning accuracy does not degrade much.

4 Conclusion
A method with data fusion of VO, GPS and digital map for vehicle
localisation has been proposed to reduce longitudinal positioning
error that has yet to be addressed carefully in this research area. It
is a challenging task to ensure the longitudinal position is not
affected by GPS noise and VO drift, thus our strategy was to match
the VO trajectory trail with the road segments curve to find the
most likely candidate path.

Segments matching reduced the computation complexity while
increasing the probability of suitable candidate ways based on its
curve similarity score. This resulted in a localisation system that
could withstand various types of GPS noise and VO drift with the
overall mean error <3 m and longitudinal error as low as 1.43 m.
The longitudinal accuracy and precision were increased in our
proposed approach compared with methods without curve
matching, proving that the segmentation concept is able to
compensate the longitudinal error. Not only that, it can also
increase road selection accuracy immediately for swift path
planning.

This method gives greater improvement in curved roads when
compared to straight roads. However, the longitudinal error in both
cases can be limited based on the weight distribution of the nearest
candidate ways from the lookup centre. Later, the longitudinal drift
can immediately be corrected whenever there is a slight heading
variation of VO trajectory matched with road segments.

With the good performance in GPS signal loss during road
diversion, we believe the localisation accuracy can be improved if

Table 1 Positioning error comparison with other VO works
Method Drive 34 (residential) Drive 42 (highway)

ϵlat, m ϵlon, m ϵlat, m ϵlon, m
Libviso2 (M) 37.24 ± 62.62 23.91 ± 64.44 9.24 ± 41.48 10.34 ± 41.19
Libviso2 (S) 6.45 ± 19.93 6.83 ± 19.68 3.09 ± 18.71 3.00 ± 18.7
ORB-VO 2.68 ± 12.51 2.52 ± 12.49 3.90 ± 15.74 3.93 ± 15.86
ORBSLAM2 1.77 ± 6.66 2.22 ± 6.62 2.31 ± 14.83 2.38 ± 14.81
ours (random) 1.40 ± 1.06 1.37 ± 1.03 2.05 ± 1.62 2.08 ± 1.58
ours (bias) 1.66 ± 1.23 1.76 ± 1.32 2.27 ± 1.76 2.45 ± 1.89
ours (lost GPS) 1.41 ± 1.37 1.30 ± 1.48 1.34 ± 0.93 1.42 ± 1.25
 

Fig. 14  Error summary for
(a) Highway drive, (b) Residential drive
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the GPS signal error is not too severe (variance <10 m). Besides,
the dependency of fusion on GPS data can also be reduced to
minimise the effect of GPS noise by only referring to the
information during initialisation to estimate starting point and at a
later time with less referral frequency. Although our approach
requires additional computation for data fusion and curve
matching, it is designed as a complementary system to the existing
localisation by GPS. This is because there is still a possibility
where VO cannot perform well due to lighting and weather
conditions that would still require information from GPS and
digital map for localisation. Therefore, to ensure robust and
localisation, data fusion is indispensable.

This localisation method can be further improved with the use
of lane or traffic sign detections. As discussed, our VO curve
matching method is a complimentary system for longitudinal
position improvement in addition to the existing methods proposed
by other researchers. It is desirable to fuse all the available
information to obtain more accurate longitudinal localisation in the
future.
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