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Abstract: This paper presents battery aging models based on high-current incremental capac-
ity features in the presence of battery cycling profiles characterized by fast charging conditions.
In particular, the main peak area under the incremental capacity graph is proposed as a capacity
indicator. A dataset from the Toyota Research Institute is analyzed. Batteries’ cycling data are charac-
terized by various single- or double-step fast charges in constant current to reach 80% of the battery
state of charge; the remaining charge process is performed by a 1C charge. Depending on the battery,
a linear or logarithmic model was identified as the best suitable for representing the capacity–peak
area relationship. The generalization capabilities of the proposed models are evaluated by performing
an inference analysis of the fitting results over groups of batteries. Finally, we evaluated the prediction
performance of the models by adopting a cross-validation approach.

Keywords: battery aging modeling; capacity degradation models; fast charging; incremental capacity;
state-of-health

1. Introduction

Multiple technical factors heavily limiting the widespread adoption of Electric Vehicles
(EVs) are associated with the management and performance of batteries. Range anxiety,
charge times and battery lifetime are very often identified as the three main factors that
negatively impact the consumers’ perception of EVs. The reduction in flexibility and
users’ comfort introduced by relatively long charge times, and the consequent reduction of
willingness to use EVs, are part of the main arguments in favor of developing fast charging
methods and infrastructures [1].

Fast charging requires high currents, which deeply increase battery degradation
rates [2], due to the acceleration of processes such as lithium plating. The relationships
between the fast charging protocol parameters and different battery aging mechanisms
have been the topic of several research works [3–5]. In particular, multistep fast charging
with a last step of 1C after reaching a given State of Charge (SoC) value has been shown to
minimize the degradation rate induced by the use of high current rates during charging [4].

The increase in the charge current rates, and the associated rise on battery stress
conditions, such as high temperatures, boosts the importance of proper battery monitoring
and management, including the need for accurate and reliable battery capacity and State
of Health (SoH) estimation. Recent literature classifies the methods usually employed
for the estimation of battery capacity into three main groups: model-based, data-driven
and experimental methods [6,7]. The usefulness of any of those approaches under a fast
charge framework is defined by the inclusion of experiments or data with high current
rates during the characterization or training stages.

Experimental battery capacity estimation methods typically require the characteriza-
tion of the relationships between specific indicators and the battery capacity.
Those relationships can be used later for estimating the capacity during normal usage
of the battery. For a reliable estimation, the capacity indicator should be obtained regularly
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under similar operating conditions. In order to meet these requirements, usage scenarios
that are repeated during typical operation need to be identified and characterized.

For example, the work in [8] proposes the times expended on fixed voltage ranges
during a constant current (CC) charge as SoH indicators, using decision regression tree
models for combining the results for multiple charge sections. The authors of [9] propose
linear models linking the capacity with the variations of the battery surface temperature
while charging. In the literature, multiple models for the estimation of the battery capacity,
taking as input resistances computed during discharge current steps at fixed interval,
have been proposed [10,11]. The features extracted from Incremental Capacity (IC) curves
constitute a very popular family of capacity indicators in the recent literature [12,13].
Additionally, the parameters of models representing the voltage–IC relationship have been
exploited as indicators for SoH estimation [14].

It is worth mentioning that such indicators have been identified for batteries aged
without considering fast charging scenarios. Then, there is still a lack of models capable of
relating the battery capacity and suitable indicators when considering degradation paths
introduced by fast charging. In the case of batteries charged using multistep fast charging
policies, such as the one studied in [4], the 1C CC final stage is an interesting candidate
for capacity indicators analysis. In this stage, High-Current Incremental Capacity (HCIC)
features can easily be computed [13]. Previously, for batteries aged without considering
fast charging conditions, such features have been exploited for capacity estimation using
relatively simple models, which is of interest for eventual on-board implementations.

Laboratory IC-based characterization methods have extensively been explored in the
literature [15]. Unfortunately, such methods use data acquired during low current charges
and discharges, highly limiting their applicability on real-world scenarios. During recent
years, there has been an effort oriented toward extending the capacity and SoH estimation
based on IC-based indicators to conditions with currents higher than C/5 and up to 1C
currents [16]. For instance, Riviere et al. propose models based on the area under one of
the peaks of IC curves obtained at a C/3 CC charge [17]. A similar approach was proposed
by Tang et al. in [18] but computing the IC curves during 1C current charges. The work
in [19] introduced a fuzzy logic based model for SoH estimation with one of the inputs
being the peak area of the IC curve computed during a C/2 CC charge. A Gaussian Process
Regression (GPR) model for capacity degradation was proposed in [20], employing as
inputs a set of points from the IC curve acquired during a 0.75C CC charge. The authors
of [21] trained a support vector machine for the estimation of SoH from the main peak
features of 1C charge IC curves, using the data of a set of batteries aged using fixed uniform
cycles. Similarly, in [22], the authors propose models for the estimation of battery variables,
including capacity, from fixed points of the SoC against IC and Differential Voltage (DV)
curves, which are both computed using the data from C/2 charges; again, the batteries
aging was achieved by applying typical CC-constant voltage (CV) profiles. Recently, efforts
have been oriented toward extending the applicability of high current IC-based methods to
more general scenarios by considering batteries aged with varied usage patterns, including
random and driving profiles [13]. Scenarios considering IC-based SoH estimation for
batteries aged with fast charging profiles have also been recently explored [23], employing
linear multifeature models.

Reliable capacity indicators and models specifically developed for batteries aged
under fast charging conditions are still open research topics. The challenges in this area
lie in the fact that the stress factors introduced by fast charging accelerate the degradation
processes, leading to non-linear capacity trajectories, even during the battery first life
(typically defined as the period between the start of the battery useful life and the point at
which its capacity reaches a value of 80% of its initial value).

This work aims to extend the applicability of the main peak of the HCIC curve as an
indicator of the discharge capacity to usage scenarios including multistep fast charging
both in regression and in prediction. Even if linear models have been shown to be enough
for representing the relationship between IC main peak features and the capacity, the use
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of high currents during fast charging will lead to more complex relationships between
the capacity and potential indicators. This work focuses on proposing models capable of
representing the IC curve main peak area and capacity relationship even when considering
the non-linearity introduced by the regular use of high currents during charge. This is
achieved by conducting a regression analysis over 89 batteries from a publicly available
dataset shared by the Toyota Research Institute [24]. The proposed models are character-
ized by their simplicity, high generalization capabilities and low errors when considering
capacity prediction.

The paper is organized as follows. In Section 2, we introduce the Toyota Research
Institute fast charging dataset by describing the characteristics of the batteries and aging
experiments. In Section 3, we present the procedure used to extract the high current
IC curves and to extract the peak features. The models and initial inference analysis on
individual batteries are presented in Section 4. Then, in Section 5, we evaluate the fitting
results of the models on groups of batteries aged considering similar fast charging policies.
In Section 6, we show the performance of the models in a prediction scenario using a cross-
validation process based on the split of batteries. Finally, the conclusions are presented in
Section 7.

2. Toyota Fast Charging Dataset Description

The dataset includes data for 135 lithium iron phosphate (LFP)/graphite battery cells
cycled using profiles including fast-charging conditions [24,25]. The cells have a nominal
capacity of 1100 mA h and a nominal voltage of 3.3 V. Their upper and lower cutoff voltages
are 3.6 V and 2.0 V, respectively.

The batteries were cycled while placed in a forced convection temperature chamber set
to 30 ◦C. An example of a typical cycle is shown in Figure 1 (the example refers to battery
#36). The cycle includes the following phases:

1. Fast charge including one or more current steps (red and green steps in Figure 1);
2. Rest phase, lasting between 5 s and 5 min, depending on the cell;
3. 1C CC charging up to 3.6 V, followed by a CV stage, ending when the current reaches

the low current threshold of C/50 or C/20 depending on the battery;
4. Discharge at 4C down to the lower cutoff voltage;
5. Rest phase before the next cycle, with durations between 1 s and 5 min, depending on

the cell.
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Figure 1. Example of full charge and discharge cycle for battery #36 of the dataset.

Each battery has assigned a cycling policy described by a string with the format:
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{C1}C-{Q1}PER_{C2}C.

Here, the three fields {·} define the experiment fast charging stage of the cycle for each
battery. In a first step, the CC value C1 is used to charge the battery up to the SoC value Q1,
which is expressed as a percentage. The second CC step current C2 brings the battery up to
80% SoC. The values for C1 and C2 are formatted as x_d, where x is the integer part and d
is the fractional part.

Figure 1 shows an example of the charging and discharging cycles for battery 36,
which has a 7C-30PER_3_6C policy. Considering the string defining the policy, the cycle is
characterized by a first step current at 7C up to 30% SoC and a second step current at 3.6C
up to 80% SoC. In the case of policies with a single fast charging step, C1 is set equal to C2,
and Q1 = 80 %. Figure 2 shows a typical cycle for battery #1, which is characterized by a
single fast charging step of 3.6C up to 80% SoC (3_6C-80PER_3_6C).
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Figure 2. Example of full charge and discharge cycle for battery #1 of the dataset.

The dataset is divided into three “batches” of 46, 48, 46 sets of data each. In this work,
we use the first two batches only, for a total of 89 batteries, because they include tests for
which it is possible to obtain the main peak of the IC curves. The analyzed 89 batteries
were cycled under 63 different fast-charging policies, with first-step currents from 1C to
8C and second-step currents from 3C to 6C. The batteries have a widely varying cycle life
ranging from 148 to 2238 cycles.

In order to analyze the aging trends in the dataset, it is worthwhile to group batteries
characterized by similar cycling conditions. Therefore, we divide the 89 batteries into
15 groups with similar fast charging policies. The groups labeled 1, 2 and 3 have a one-step
charging policy, whose current increases with the group ID. The other groups have a
two-step charging policy with a first-step current that grows with group ID. The batteries
in groups 1, 8, 9, 11, 12 and 15 are characterized by equal values for both C1 and C2; for
groups 7, 10, 13 and 14, C1 is the same within each group, while C2 varies. The remaining
groups collect the remaining batteries (2–6). Table 1 collects all the information about the
batteries grouping considered in this work.
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Table 1. Considered batteries groups defined according to fast charging policy.

Group Batteries N. Step C1 C2 Comments

1 1, 2, 3 1 3.6C same policy current for all batteries

2 4, 5, 6 1 [4C− 4.4C] C1 equal to 4C or 4.4C

3 7, 8, 21, 22, 66, 67, 68 1 [4.8C− 5.4C] C1 equal to 4.8C or 5.4C

4 47, 48, 49, 50, 51, 52, 53, 54 2 [1C− 3.6C] [4.85C− 6C] C1 and C2 very variable

5 55, 56, 57, 58, 59, 60, 61, 62 2 [4C− 4.4C] [4.85C− 6C] C1 equal to 4C or 4.4C, C2 very variable

6 63, 64, 65, 69, 70, 71 2 [4.64C− 4.9C] [4.25C− 6C] C1 and C2 very variable

7 72, 73, 74, 75, 76, 77 2 5.2C [3C− 4.75C] same C1, C2 variable

8 11, 12, 15, 16, 19, 20 2 5.4C 3C same policy currents for all batteries

9 9, 10, 13, 14, 17, 18 2 5.4C 3.6C same policy currents for all batteries

10 78, 79, 80, 81, 83 2 5.6C [3C− 4.5C] same C1, C2 variable

11 25, 26, 29, 30, 33, 34 2 6C 3C same policy currents for all batteries

12 23, 24, 27, 28, 31, 32 2 6C 3.6C same policy currents for all batteries

13 82, 84, 85, 86, 87, 88, 89 2 [5.6C− 6C] [3C− 4.75C] C1 equal to 5.6C or 6C, C2 very variable

14 35, 36, 37, 38, 39, 40 2 7C [3C− 3.6C] same C1, C2 equal to 3C or 3.6C

15 41, 42, 43, 44, 45, 46 2 8C 3.6C same policy currents for all batteries

3. Incremental Capacity Main Peak Area Extraction

We evaluate the high-current IC for the 89 batteries belonging to the first two batches
of the dataset according to the procedure described in detail by Ospina Agudelo et al.
in [13]. In particular, we extract the main peak features, namely its position, height and
area, from the 1C CC charging stage. For the available dataset, such a stage always starts
when the battery reaches 80% SoC. In practice, the initial SoC value may be selected
according to the application, depending on the battery technology and usage patterns.

As discussed in [13], by definition, the main peak area, PA, can be interpreted as a
partial capacity related to the full capacity, meaning that it can be used as capacity indicator
regardless of the initial SoC value as long as the employed value is kept constant between
PA computations. The procedure for PA extraction can be summarized in the following
main steps:

• Extraction of current and voltage data during a CC charge stage;
• Filtering of the voltage data using a Savitzky–Golay (SG) approach, leading to the

filtered voltage vSG;
• Computation of the capacity q through integration with a trapezoidal approximation;
• Computation of the incremental capacity (IC0):

IC0(k) =
dq

dvSG
(k) =

q(k)− q(k− 1)
vSG(k)− vSG(k− 1)

, (1)

where k is the discrete time step;
• Application of a Gaussian-Weighted Moving Average filter (GWMA) to IC0 to ob-

tain IC;
• Extraction of peak position (PP), peak height (PH), and PA in a voltage window 2∆V,

as illustrated by Figure 3, which shows an example of an IC curve filtered by the
GWMA filter.
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Figure 3. Incremental capacity curve sample with main peak features highlighted.

The selection of the SG filter for the voltage signal over other moving window filters
was motivated by its capability to preserve the location of interest points of the curve [26].
Similarly, for the filtering of the IC0 data, the GWMA gave better performance than simpler
alternatives, such as the moving average or SG filters. With a suitable tuning of the filter
window, the GWMA filter reaches desirable smoothing levels with very low distortion of
the IC curve features. The higher performance of this filter compared to other approaches
is confirmed by Li et al. for low-current IC [27].

The filters parameters have been adjusted for the dataset. The window of the SG filter
is set equal to five samples, the window for the GWMA filter is 20 mV, and ∆V = 25 mV.
The value of ∆V was selected empirically by aiming to maximize the correlation between
PA and SoH while avoiding that the voltage range used for the area computation falls
outside of the available voltage data points. Furthermore, it is worth highlighting that the
use of a fixed ∆V during the whole battery first life aims to enable the PA computation
even when the data for the whole peak is not available.

4. Models for Capacity Estimation from the Incremental Capacity Main Peak Area

The procedure described in Section 3 is applied to all the available cycles for the
89 batteries. It is worth mentioning that some cycles are affected by errors in the acquisition,
such as missing portions of data, and were not processed for IC curve extraction in order to
avoid unnecessary outlier points. After the removal of the irregular cycles, the discharge
capacity Q of the battery, computed in the 4C-discharge phase, can be related, cycle by
cycle for each battery, to the IC peak area PA. It is worth noting that the computation of Q
through a 4C CC discharge current, which is the only one available in all tests, leads to lower
capacity values than those expected using typical characterization currents, such as 1C or
C/20. Nevertheless, despite the underestimation, we expect that the conclusions obtained
for this scenario, regarding the Q− PA relation, hold for typical characterization cases.

A visual inspection of the Q− PA scatter plots for the batteries first life allowed us to
identify two potential sets of cells: batteries with linear and non-linear Q−PA relationships.
In order to evaluate which model is suitable for each battery, we perform a regression
analysis on all the first life data available for each battery. We consider one linear model
and three non-linear models.

The first model considered is a linear equation:

Q = al1PA + al0 , (2)
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where al1 and al0 are the fitting coefficients representing, respectively, the slope and intercept
of the model. An example of a scatter plot for a battery in the linear set is presented in
Figure 4, which also includes the fitted linear model.
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Figure 4. Example of linear (solid line) model fitting for battery #18 first life data (markers).

For the batteries with a clear non-linear Q− PA relationship, three additional models
were considered, starting with a second-degree polynomial function:

Q = aq2PA2 + aq1PA + aq0 , (3)

where aq2 , aq1 and aq0 are the model coefficients. The third model is characterized by a
power law:

Q = ap1PAep + ap0 , (4)

with fitting parameters ap1 , ep, and ap0 . Finally, the shape of the aging curve suggests to
consider also a logarithmic model:

Q = ag1 log PA + ag0 . (5)

The model is again characterized by two fitting coefficients, ag1 and ag0 .
Figure 5 shows an example of the performance of the four fitting models for battery

#42. In this case, as well as for the other batteries in the non-linear set, the power law model
has on average the best fitting performance in terms of Root Mean Squared Error (RMSE).
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Figure 5. Example of power law and logarithmic (solid line) models fitting for battery #42 first life
data (markers).

We compute the fitting coefficients for each battery in Matlab by using the built-in
function fit. The function gives as output the fitting coefficients of the models, the square
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of the correlation coefficient R2, and the RMSE. In order to summarize the obtained results,
we computed the mean and the standard deviation over all the batteries of the models
coefficients, R2 and RMSE. The aggregated results are presented in Table 2.

Table 2. Average values and standard deviations of the parameters of the linear, polynomial, power
and logarithmic models for all 89 batteries.

Parameter Mean Standard Deviation

Linear model
al1 1.943 12.6%
al0 0.879 1.3%
R2 0.981 1.6%
RMSE (mA h) 5.863 36.3%

Polynomial model
aq2 −10.265 −60.1%
aq1 3.138 21.4%
aq0 0.849 1.8%
R2 0.994 0.8%
RMSE (mA h) 2.902 40.9%

Power law model
ap1 0.973 49.6%
ep 0.469 49.1%
ap0 0.719 69.1%
R2 0.995 0.9%
RMSE (mA h) 2.459 54.4%

Logarithmic model
ag1 0.100 11.7%
ag0 1.286 2.5%
R2 0.979 0.9%
RMSE (mA h) 6.299 24.7%

The average R2 is satisfactorily high for all the models, with the polynomial and power
law models having the highest averages over all the batteries. The power law model is
also characterized by the lowest average RMSE (less than 2.5 mA h). Unfortunately, its
coefficients deeply vary among batteries, as shown by the highest values of standard devia-
tion for the fitting coefficients (overtaking 45 %). Such values indicate that the parameter
values are strongly dispersed, and this model has poor generalization capabilities when
considering varied aging policies. Conversely, the logarithmic model has good values for R2

and RMSE, and, in addition, the values of the standard deviations for ag1 and ag0 are low.
This result suggests using the logarithmic model to represent the link Q−PA when the linear
model is not enough. After an analysis of the obtained R2 values per battery, we divided the
batteries into two sets: Set A including all the batteries from groups with a majority of cases
with an R2 value for the linear model higher than the one for the logarithmic model and
Set B for the batteries from the remaining groups. In order to identify if there is any relation
between the fast charging policy parameters and which is the model with the highest R2

for each battery, we checked the distribution of the batteries for which the logarithmic and
linear models gave the best performance in terms of the fast charging stage characteristics.
This is summarized in Figure 6, where we plot the maximum fast charging current (namely
max(C1, C2)) against the weighted average fast charging current, which is computed as:

Cav =
C1Q1 + C2(80−Q1)

80
. (6)

The points in the plot in Figure 6 represent the batteries with a difference over 1 %
between the R2 values for the linear and logarithmic models, with the circles corresponding
to batteries better represented by the linear model and the squares the batteries with higher
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R2 for the logarithmic model. The distribution of the points in the plain highlights that
batteries with lower maximum and average currents can be better represented using a linear
Q−PA relationship, while for the cases with higher maximum currents, the non-linearity of
the capacity fading leads to a Q− PA relation better represented by the logarithmic model.
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Figure 6. Maximum and weighted current during fast charging for the batteries with a difference in
R2 higher than 1%.

5. Fitting Results on Battery Groups

In order to further evaluate the generalization capabilities of the models for Sets A and
B, we perform fits of the linear and logarithmic models per group introduced in Table 1.
For each group, the fitted data include the first-life data of all batteries.

Table 3 shows the results of the linear and logarithmic fits for each battery group,
including the models coefficients, R2 and RMSE. Additionally, Table 3 also presents the
average and standard deviation of each quantity. On average, over all the groups, R2 values
over 0.96 and RMSE values under 8.76 mA h were obtained for both models, showing the
suitability of both models for representing the relationship between Q and PA for multiple
batteries cycled under similar fast charging regimes.

Table 3. Values of ag1 , ag0 , al1 , al0 , R2, and RMSE (mA h) for the linear and logarithmic models
computed for the 15 groups.

Group ag1 ag0 R2
LOG RMSELOG al1 al0 R2

LIN RMSELIN

1 0.0804 1.2322 0.9630 8.6189 1.6121 0.8949 0.9813 6.1181

2 0.0895 1.2561 0.9598 8.7228 1.7216 0.8866 0.9856 5.2181

3 0.1110 1.3138 0.9394 12.8465 1.9677 0.8709 0.9204 14.7236

4 0.0899 1.2728 0.9584 10.6455 2.1777 0.8821 0.9520 11.4243

5 0.0923 1.2782 0.9673 9.4663 2.0864 0.8841 0.9545 11.1617

6 0.0999 1.2963 0.9730 8.2327 2.1524 0.8764 0.9812 6.8653

7 0.0945 1.2814 0.9728 7.7834 1.9962 0.8857 0.9767 7.2127

8 0.0982 1.2759 0.9719 7.1116 1.8185 0.8789 0.9815 5.7720

9 0.1057 1.2946 0.9729 7.2622 1.7912 0.8767 0.9862 5.1798

10 0.0974 1.2888 0.9684 8.4403 1.9789 0.8858 0.9745 7.5760

11 0.1031 1.2837 0.9726 7.7171 1.7781 0.8738 0.9844 5.8200

12 0.1089 1.3005 0.9780 6.7235 1.7813 0.8751 0.9850 5.5494

13 0.0832 1.2461 0.9304 12.4937 1.6132 0.9044 0.8754 16.7150

14 0.1053 1.2890 0.9679 7.9572 1.7861 0.8747 0.9668 8.1005

15 0.1031 1.2822 0.9764 7.3493 1.6789 0.8791 0.9651 8.9377
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Table 3. Cont.

Group ag1 ag0 R2
LOG RMSELOG al1 al0 R2

LIN RMSELIN

Mean 0.0975 1.2795 0.9648 8.7581 1.8627 0.8820 0.9647 8.4249

SD 9.35 % 1.66 % 1.40 % 21.33 % 9.95 % 1.00 % 3.16 % 42.34 %

As expected, the logarithmic performs better for groups 4, 5, 13, 14 and 15, which
include most of the batteries identified in the previous section as having a non-linear Q−PA
relationship. In particular, increases over 1 % in terms of R2 with respect to the linear model
can be observed for groups 5, 13 and 15, which is further evidenced by the scatter plots
in the right side of Figure 7, where it can be observed how the logarithmic model is
better at following the non-linear tendency of said battery groups. For the remaining
groups, the linear model seems to be enough for characterizing the Q− PA relation during
the first life, as it was previously identified for batteries aged using non-fast-charging
patterns [13]. It is worth mentioning that during the first life, the linear model seems to
have the best fitting performance when the considered batteries were aged with a single
step fast charging policy at relatively low current values, as evidenced by the results for
groups 1 and 2, as presented in the left side of Figure 7.
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Figure 7. Capacity Q as a function of the peak area PA for various battery groups.
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As a final evaluation of the generalization capabilities of the linear and logarithmic
models during the first life of batteries, we performed a single fit per batteries set and
evaluated their R2 and RMSE. The results for the linear and logarithmic models fitted using
the data from Set A and Set B, respectively, are presented in Figure 8.
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Figure 8. Linear (left) and logarithmic (right) models applied to all the first-life data of Set A and
Set B.

Even with the considerable dispersion in the datapoints available for the batteries
identified as following a logarithmic tendency, for both sets, R2 values over 0.9 were
found as presented in Table 4. With RMSE values of 1.02 % and 1.38 % for the linear and
logarithmic models, respectively, over the available first-life datapoints, we can conclude
that the models are suitable for representing the Q− PA relationship even when profiles
with vastly different fast-charging current values are considered.

Table 4. Values of al1 , al0 , R2, and RMSE calculated for calculated for all batteries in Set A and values
of ag1 , ag0 , R2, and RMSE for all batteries in Set B.

Parameter Value Parameter Value

al1 1.7190 ag1 0.0854
al0 0.8874 ag0 1.2469
R2

LIN 0.9410 R2
LOG 0.9054

RMSELIN (mA h) 11.1941 RMSELOG (mA h) 15.1846

6. Peak Area-Based Models for Battery Capacity Prediction

In Section 4, the inference analysis of battery data showed that the linear and log-
arithmic models (2) and (5) are the most suitable for the representation of the Q − PA
relationship for batteries Set A (groups 1, 2, 3, 6, 7, 8, 9, 10, 11 and 12) and Set B (groups 4, 5,
13, 14 and 15), respectively. In this section, we move from inference to prediction using the
same models. We emulate a scenario in which the models are initially trained on a given set
of batteries, which is called the training set. Then, we use the trained models to predict the
battery capacity on another set, namely the test set, evaluating the forecasting performance
of such models.

We implemented the aforementioned scenario by dividing both Set A and Set B into
two parts each. The first part, employed as a training set, is used to estimate the coefficients
for the linear and logarithmic models using ordinary least squares. The other part of the
set is used for the evaluation of the prediction performance in terms of Mean Squared
Error (MSE). We take into consideration that each set contains multiple groups of batteries,
containing from three to eight batteries each. Therefore, the data split focuses on each
group. For each group in each set, 70 % of the batteries are randomly selected, and their
data are added to the training set. Conversely, the data of the remaining batteries are added
to the test set.
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6.1. Prediction on Battery First Life

The first prediction analysis is performed only on the first-life data available for each
battery. For Sets A and B, the model fitting and evaluation procedures were performed for
10,000 random splits of batteries. For all the trained models, we collected the MSE values
achieved in each test and compute their average µMSE and standard deviation σMSE, as
summarized by the upper half of Table 5.

Table 5. Prediction average results for 10,000 random splits of data.

Considered Datapoints Batteries Set Model µMSE (mAh2) σMSE (%)

First-life only
Set A Linear 0.0848 15.00

Logarithmic 0.1121 14.11

Set B Linear 0.2088 42.79

Logarithmic 0.1154 28.54

All available
Set A Linear 0.1390 12.84

Logarithmic 0.1215 13.30

Set B Linear 0.3380 29.27

Logarithmic 0.1249 22.37

As expected, the linear model shows a lower µMSE over all the tests for Set A, with
a decrease of 24.35 % with respect to the logarithmic model. The opposite is true for
Set B, for which the logarithmic model introduced a reduction of 44.73 % in the µMSE when
compared with the linear model. These results are in full agreement with the inference
analysis of Section 5. Figure 9 graphically represents the results in terms of MSE for the
first 100 prediction tests.
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Figure 9. First life prediction results for 100 random splits of data test.

The right-hand side plot in the Figure 9 highlights multiple spikes in the MSE plot
for the linear model, corresponding to cases on which batteries with higher current values
during fast charging are left only on the test set, leading to high errors. The logarithmic
model shows a considerably lower dependency of MSE on the battery split, highlighting
its suitability as a global model.

6.2. Prediction Beyond First Life

The prediction results beyond the first life of the batteries are shown in the bottom of
Table 5 and in Figure 10. It is worth noticing that these results of the predictions change
here with respect to those presented above. Here, the logarithmic model has the lowest
MSE for the majority of the data splits. On the one hand, for the batteries in Set A, where all
batteries go beyond the first life, the very well-known “elbow” effect appears. Obviously,
such an effect can better be represented by the logarithmic model, even if the improvement
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introduced by this model is of only 12.59 % with respect to the linear model, as shown
in the left-hand side plot of Figure 10. The right-hand side plot clearly shows that the
logarithmic model is much more accurate for batteries in Set B. The improvement is larger
than the one achieved from first-life prediction.

These results show that the logarithmic model is of high interest when considering
battery capacity estimation beyond the typical first-life threshold. We believe that it can be
considered a promising global modeling approach to battery aging in a framework with
fast charging and extended life.
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Figure 10. Full-life prediction results for 100 random splits of data test.

7. Conclusions

The Incremental Capacity (IC) analysis applied to the batteries in the Toyota fast
charging dataset shows that the peak area PA of the IC curves is a viable indicator to
estimate the 4C discharge capacity Q and state-of-health for batteries cycled with fast
charging profiles. During a fitting analysis performed over individual batteries subject to
multistep fast charging profiles during first life, we identified that batteries with maximum
and average fast charging currents under 5 A showed a linear Q−PA, which is in agreement
with previous results considering usage patterns without fast charging.

When employing higher currents, both maximum and on average, the Q − PA re-
lationship may exhibit non-linear tendencies, which can accurately be represented by
a logarithmic model. Logarithmic representations were favored over other non-linear
alternatives, as the fitting results obtained with the logarithmic models lead to lower
standard deviations in the adjusted model coefficients. Those results were confirmed for
battery groups with similar fast charging policies, showing the generalization capabilities
of the models.

Then, batteries were classified into two sets: those for which the linear model per-
formed better during the inference analysis, and the remaining ones, namely Sets A and B.
The performance on a prediction framework of the linear and logarithmic models was
evaluated by adopting a cross-validation approach. For each set, we adopted a 70–30%
training–test split of batteries. The training and test procedure was repeated 10,000 times for
each set. As expected, the linear model presented a lower average MSE over all the tests for
Set A, with a decrease of 24.35% with respect to the logarithmic model. The opposite is true
for Set B, for which the logarithmic model introduced a reduction of 44.73% in terms of aver-
age MSE when compared with the linear model. These results change when extending the
prediction analysis beyond the first life of the batteries; in such a case, the logarithmic model
has the lowest MSE for the majority of the data splits. On the one hand, for the batteries in
Set A, going beyond first life leads to the appearance of the very well-known “elbow” effect,
which can be better represented by the logarithmic model. On the other hand, the inclusion
of data points beyond the first life further improves the logarithmic model performance
for batteries in Set B. These results show that the logarithmic model is of great interest for
battery capacity estimation beyond the typical first-life threshold.
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