Localization in Symplectic Geometry and Application to Path Integral and Supersymmetry
Abstract
Equivariant geometry involves a group action on a manifold. This is the starting point to consider a super-geometry showing even and odd variables (bosons, fermions). The localization methods that provide source in the symplectic geometry (Duistermaat-Heckman formula), allow in certain cases to compute path integrals in an explicit way by using the concept of localization. Applications are important in topological field theory: They lead to the definition of new symplectics invariants.