Abstract : We consider an optimal control problem associated to Dirichlet boundary value problem for linear elliptic equations on a bounded domain Ω. We take the matrix-valued coecients A(x) of such system as a control in L 1 (Ω; R N × R N). One of the important features of the admissible controls is the fact that the coecient matrices A(x) are non-symmetric, unbounded on Ω, and eigenvalues of the symmetric part A sym = (A + A t)/2 may vanish in Ω.
https://hal-cnam.archives-ouvertes.fr/hal-02946721 Contributor : Thierry HorsinConnect in order to contact the contributor Submitted on : Tuesday, October 6, 2020 - 4:39:30 PM Last modification on : Monday, February 21, 2022 - 3:38:16 PM Long-term archiving on: : Thursday, January 7, 2021 - 7:13:59 PM
Thierry Horsin, Peter Kogut. On unbounded optimal controls in coefficients for ill-posed elliptic dirichlet boundary value problems. Вісник Дніпропетровського університету. Серія: Моделювання, 2014, 22 (8), pp.3. ⟨10.15421/141401⟩. ⟨hal-02946721⟩